HEX
Server: LiteSpeed
System: Linux standart9.isimtescil.net 3.10.0-962.3.2.lve1.5.26.7.el7.x86_64 #1 SMP Wed Oct 2 07:53:12 EDT 2019 x86_64
User: karalev (5310)
PHP: 8.2.29
Disabled: NONE
Upload Files
File: //opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pyo
�
�)�Uc@ s�ddlmZmZddlZddlZddlZddlZddlZddlm	Z	ddl
Z
ddlZddlm
Z
ddlZejZddljZddlmZddljZddljZddljZddljZddlj Z!ddl"j#Z$ddlm%Z%ddl&j'Z'ddl(j)Z*ddl+j,Z-ddl.j/Z0ddl1j2Z2ddl3j4Z5ddl6j7Z8ddl9j:Z;ddl<j=Z>ddl?j@ZAddlBjCZDddlEjFZGddlHjIZJddlKjLZMddlNjOZPejQZQejRZRejSZSd�ZTd�ZUd	�ZVd
fd��YZWdejXfd
��YZYddlZm[Z[m\Z\dfd��YZ]iZ^e_d�Z`e`�Zae%jbjcdejdeY��e%jbjcdejdeY��dS(i����(tdivisiont
generatorsN(t
itemgetter(tma(tallow_rasterization(t	docstringcC s@t|�s|S|dkr tS|dkr0tStd��dS(Ntontoffs,string argument must be either 'on' or 'off'(tis_string_liketTruetFalset
ValueError(ts((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pyt_string_to_bool*scC s]d}d}d}yitjj|�}ytt|��}Wntk
rZ|||fSX||krt|||fSd}Wntk
r�nX|jd�dkr�d}|jdd�}n|jd�dkr�d}|jdd�}n|jd�dkrd}|jdd�}ng|D]}|^q&}x�|D]�}|t	j
kr||dk	rstd|��n|}q?|t	jkr�|dk	r�td|��n|}q?|tjjkr�|dk	r�td	|��n|}q?td
|��q?W|dkr&|dkr&t
d}n|dkr;d}n|dkrPd}n|||fS(
s�
    Process a MATLAB style color/line style format string.  Return a
    (*linestyle*, *color*) tuple as a result of the processing.  Default
    values are ('-', 'b').  Example format strings include:

    * 'ko': black circles
    * '.b': blue dots
    * 'r--': red dashed lines

    .. seealso::

        :func:`~matplotlib.Line2D.lineStyles` and
        :func:`~matplotlib.pyplot.colors`
            for all possible styles and color format string.
    s--its-.t tNones1Illegal format string "%s"; two linestyle symbolss.Illegal format string "%s"; two marker symbolss-Illegal format string "%s"; two color symbolss*Unrecognized character %c in format stringslines.linestyleN(RtmcolorstcolorConvertertto_rgbtstrtintRtfindtreplacetmlinest
lineStylestlineMarkerstcolorstrcParams(tfmtt	linestyletmarkertcolortfmtinttctchars((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pyt_process_plot_format3sb




			
		cC s|td<tjdt�dS(s�
    Change the default cycle of colors that will be used by the plot
    command.  This must be called before creating the
    :class:`Axes` to which it will apply; it will
    apply to all future axes.

    *clist* is a sequence of mpl color specifiers.

    See also: :meth:`~matplotlib.axes.Axes.set_color_cycle`.

    .. Note:: Deprecated 2010/01/03.
              Set rcParams['axes.color_cycle'] directly.

    saxes.color_cycles)Set rcParams['axes.color_cycle'] directlyN(RtwarningstwarntDeprecationWarning(tclist((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pytset_default_color_cycle�s
	t_process_plot_var_argscB sneZdZdd�Zdd�Zd�Zd�Zd�Zd�Z	d�Z
d	�Zd
�Zd�Z
RS(
s4

    Process variable length arguments to the plot command, so that
    plot commands like the following are supported::

      plot(t, s)
      plot(t1, s1, t2, s2)
      plot(t1, s1, 'ko', t2, s2)
      plot(t1, s1, 'ko', t2, s2, 'r--', t3, e3)

    an arbitrary number of *x*, *y*, *fmt* are allowed
    tplotcC s ||_||_|j�dS(N(taxestcommandtset_color_cycle(tselfR,R-((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pyt__init__�s		cC s/|dkrtd}ntj|�|_dS(Nsaxes.color_cycle(RRt	itertoolstcycletcolor_cycle(R/R(((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pyR.�s
cO s�|jjdk	r�|jjdk	r�|jd|jjj�}|jd|jjj�}||jjjkr�|jjj|�n||jjjkr�|jjj|�q�n|j||�}|S(Ntxunitstyunits(R,txaxisRtyaxistpoptunitst	set_unitst_grab_next_args(R/targstkwargsR4R5tret((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pyt__call__�s$cK scx\|j�D]N\}}d|}t||�sBtd|�nt||�}||�q
WdS(Nsset_%ssThere is no line property "%s"(titemsthasattrt	TypeErrortgetattr(R/tlineR=tkeytvaltfuncNametfunc((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pyt
set_lineprops�s
cK scx\|j�D]N\}}d|}t||�sBtd|�nt||�}||�q
WdS(Nsset_%ssThere is no patch property "%s"(R@RARBRC(R/t	fill_polyR=RERFRGRH((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pytset_patchprops�s
cC sm|jjdk	r�|jjdk	r�|jjj|�}|jjj|�}|jdkr�|rx|jj|�}n|r�|jj|�}q�q�ntj	|�}tj	|�}|j
d|j
dkr�td��n|jdks�|jdkr
td��n|jdkr8|dd�tj
f}n|jdkrc|dd�tj
f}n||fS(NR+is&x and y must have same first dimensionis"x and y can be no greater than 2-Di(R,R6RR7tupdate_unitsR-tconvert_xunitstconvert_yunitstnpt
atleast_1dtshapeRtndimtnewaxis(R/txtytbxtby((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pyt_xy_from_xy�s&$
cC s`|j�}d|kr.|jj�|d<ntj||d|j|�}|j||�|S(NR R,(tcopyR3tnextRtLine2DR,RI(R/RTRUtkwR=tseg((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pyt	_makeline�s	c	C s�y|d}Wn tk
r0|jj�}nXtjtj|dd�tjf|dd�tjff�d|dtd|d�}|j	||�|S(NR t	facecolortfilltclosed(
tKeyErrorR3RZtmpatchestPolygonROthstackRSR	RK(R/RTRUR\R=R_R]((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pyt	_makefills
5
cC s�g}t|�dkrNt|d�rNt|d�\}}}|d }n-t|�dkrltd�nd
\}}}i}x?td|||f�D]%\}}	|	dk	r�|	||<q�q�Wtj|d�}
t|�dkr�tj|d	�}ntj|
j	d	d
t
�}|j||
�\}}
|jdkrM|j
}n|jdt�|d<|j}|j	d|
j	d}
}xgtt|
|��D]P}||dd�||
f|
dd�||f||�}|j|�q�W|S(Nii����is!third arg must be a format stringRRR iitdtypeR+Ra(NNN(s	linestylesmarkerscolor(tlenRR$RRtzipRORPtarangeRQtfloatRXR-R^tgetR	Rftxrangetmaxtappend(R/ttupR=R>RRR R\tktvRURTRHtncxtncytjR]((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pyt
_plot_argss4"
		=co s�|}x�t|�dkrdSt|�dkrWx|j||�D]}|VqDWdSt|d�rpd}nd}x#|j|| |�D]}|Vq�W||}q	dS(Niii(RhRvR(R/R<R=t	remainingR]tisplit((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pyR;5s			N(t__name__t
__module__t__doc__R0RR.R?RIRKRXR^RfRvR;(((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pyR*�s	
					$	
		%tAxescB s�eZdZdZej�Zej�Zd�Ze	e
e	e	de	e	d�Zd�Zd�Z
d�Zd�Zd	d
�Zd�Zd�Zd	d
�Zd�Zd�Zd�Zed�Zdd�Zd�Zd�Zd�Zd�Zd�Ze	ddd�Zd�Z d�Z!e"e!�Z#d�Z$d�Z%d �Z&e	d!�Z'd"�Z(e	e	d#�Z)d$�Z*d%�Z+d&�Z,d'�Z-d(�Z.d)�Z/e	d*�Z0d+�Z1d,�Z2d-�Z!d.�Z3d/�Z4d0�Z5d1�Z6d2�Z7d3�Z8d4�Z9d5�Z:d6�Z;d7�Z<d8�Z=d9�Z>d:�Z?e
d;�Z@d<�ZAd=�ZBd>�ZCd?�ZDd@�ZEdA�ZFe
e
dB�ZGdC�ZHdD�ZIe	e	e	dE�ZJdF�ZKdG�ZLdH�ZMdI�ZNdJ�ZOdK�ZPdL�ZQdM�ZRdN�ZSdO�ZTdP�ZUdQ�ZVe
de	dR�ZWe	e
e
dS�ZXeYe	edT��ZZdU�Z[dV�Z\dW�Z]dX�Z^dY�Z_dZ�Z`d[�Zad\�Zbecjde	d]d^��Zed_�Zfde	d`�Zgdda�Zhdb�Zidc�Zjdd�Zkde�Zldf�Zmdg�Zndh�Zoe	e	di�Zpdj�Zqe	e	e
edk�Zrdl�Zsecjddm��Ztedn�Zuedo�Zvdp�Zwdq�Zxedr�Zyecjde	eds��Zzdt�Z{du�Z|dv�Z}e	e	dw�Z~dx�Ze	e	e
edy�Z�dz�Z�ecjdd{��Z�ed|�Z�ed}�Z�d~�Z�d�Z�ed��Z�ecjde	ed���Z�e	d��Z�e	d��Z�d��Z�d��Z�d��Z�d��Z�d��Z�d��Z�d��Z�d��Z�d��Z�d��Z�d��Z�d��Z�d��Z�d��Z�d��Z�d��Z�d��Z�d��Z�d��Z�e	e	d��Z�d��Z�ecjde	d���Z�d��Z�ecjde	e	d���Z�d��Z�ecjde	e	d���Z�ecjde	ed���Z�ecjdd���Z�ecjdd�d�d�d���Z�ecjdd�d�d�d���Z�ecjdd�d�d���Z�ecjdd�d�d���Z�ecj�d�d�dd���Z�ecjdd�d�dd���Z�ecjdd���Z�ecjdd�e	e
ed���Z�ecjdd���Z�ecjdd���Z�ecjdd���Z�ecjdd���Z�ecjde
e�j�e
d�d���Z�d��Z�d��Z�d��Z�d��Z�ecjdd�e	d���Z�ecjdd�e	d���Z�ecjdd���Z�d�d�d�d��Z�e	e	e	e	d�ed�d��Z�ecjde	e	d�e	e	d�eeeeed���Z�d�d�d�d�e	e	ee	d��Z�ecjdd�d�d�e	e	e	e	e	e	e
e	d���Z�ecjde	d�e	d�d�e	e	e	e	e	e	e	d�e�j�e	ed���Z�ecjdd���Z�d��Z�e�j�j�e�_d��Z�e�j�j�e�_ecjdd���Z�ecjdd���Z�ecjdd�e	ed���Z�ecjdd�e	d���Z�ecjde	e	e	e	e	e	e	e	e	e	d�d�e	e	e	d���Z�d��Z�ecjdd���Z�ecjdd���Z�ecjdd���Z�d��Z�e�j�j�e�_d��Z�e�j�j�e�_d��Z�e�j�j�je�_ecjdd���Z�d��Z�d��Z�d��Z�d��Z�ecjdd�e	ee	ee	d�d�d�e	ee	e	d��
�Z�ecjdd�d�d�e�j�e�j�d�e	d�e	d��	�Z�ecjdd�d�d�e�j�e�j�d�e	d�e	d��	�Z�ecjdd�d�d�e�j�e�j�d�e	d�e	d��	�Z�ecjdd�d�d�e�j�e�j�d�e	e	e	d�e	d���Z�d�e	e	d�d��Z�d��Z�d��Z�d��Z�d��Z�d��Z�e�j�j�e�_d��Z�e�j�j�e�_d��Z�e�j�je�_d��Z�e�j�je�_RS(�sa
    The :class:`Axes` contains most of the figure elements:
    :class:`~matplotlib.axis.Axis`, :class:`~matplotlib.axis.Tick`,
    :class:`~matplotlib.lines.Line2D`, :class:`~matplotlib.text.Text`,
    :class:`~matplotlib.patches.Polygon`, etc., and sets the
    coordinate system.

    The :class:`Axes` instance supports callbacks through a callbacks
    attribute which is a :class:`~matplotlib.cbook.CallbackRegistry`
    instance.  The events you can connect to are 'xlim_changed' and
    'ylim_changed' and the callback will be called with func(*ax*)
    where *ax* is the :class:`Axes` instance.
    trectilinearcC sdt|jj�S(NsAxes(%g,%g;%gx%g)(ttuplet	_positiontbounds(R/((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pyt__str___sRc
K s�didjgtj�D]}t|�^q�d6tjj|�t|tj	�re||_
ntj	j|�|_
|j
j�|_
|j|�|jd�d|_|jd�||_||_|dk	r|jj||�|jdkrd|_nd|_n|dk	rZ|jj||�|jdkrNd|_nd|_n|j|�|j|�|j|
jdd��|j�|_|j�|dkr�td	}n||_||_ td
|_!d|_"td|_#i|_$|j%�d|_&d|_'|j(d�d|_)|j*t+�|j,d�|r_|j-|�n|	ru|j.|	�nt/|
�r�tj0||
�n|j1dk	r�|j1j2j3d|j4�|_5n|j6dk	r�|j6j2j3d|j4�|_7ndS(Ns5

        Build an :class:`Axes` instance in
        :class:`~matplotlib.figure.Figure` *fig* with
        *rect=[left, bottom, width, height]* in
        :class:`~matplotlib.figure.Figure` coordinates

        Optional keyword arguments:

          ================   =========================================
          Keyword            Description
          ================   =========================================
          *adjustable*       [ 'box' | 'datalim' | 'box-forced']
          *alpha*            float: the alpha transparency (can be None)
          *anchor*           [ 'C', 'SW', 'S', 'SE', 'E', 'NE', 'N',
                               'NW', 'W' ]
          *aspect*           [ 'auto' | 'equal' | aspect_ratio ]
          *autoscale_on*     [ *True* | *False* ] whether or not to
                             autoscale the *viewlim*
          *axis_bgcolor*     any matplotlib color, see
                             :func:`~matplotlib.pyplot.colors`
          *axisbelow*        draw the grids and ticks below the other
                             artists
          *cursor_props*     a (*float*, *color*) tuple
          *figure*           a :class:`~matplotlib.figure.Figure`
                             instance
          *frame_on*         a boolean - draw the axes frame
          *label*            the axes label
          *navigate*         [ *True* | *False* ]
          *navigate_mode*    [ 'PAN' | 'ZOOM' | None ] the navigation
                             toolbar button status
          *position*         [left, bottom, width, height] in
                             class:`~matplotlib.figure.Figure` coords
          *sharex*           an class:`~matplotlib.axes.Axes` instance
                             to share the x-axis with
          *sharey*           an class:`~matplotlib.axes.Axes` instance
                             to share the y-axis with
          *title*            the title string
          *visible*          [ *True* | *False* ] whether the axes is
                             visible
          *xlabel*           the xlabel
          *xlim*             (*xmin*, *xmax*) view limits
          *xscale*           [%(scale)s]
          *xticklabels*      sequence of strings
          *xticks*           sequence of floats
          *ylabel*           the ylabel strings
          *ylim*             (*ymin*, *ymax*) view limits
          *yscale*           [%(scale)s]
          *yticklabels*      sequence of strings
          *yticks*           sequence of floats
          ================   =========================================
        s | tscaletautotboxtCtdatalimtaxes_locatorsaxes.facecolorsaxes.axisbelowiЊ��s	axes.holdiRqsunits finalize(iRq(8tjointmscaletget_scale_namestreprtmartisttArtistR0t
isinstancetmtransformstBboxRtfrom_boundstfrozent_originalPositiontset_axest
set_aspectt_adjustablet
set_anchort_sharext_shareyRt_shared_x_axest_shared_y_axest	set_labelt
set_figuretset_axes_locatorRlt_gen_axes_spinestspinest
_init_axisRt_axisbgt_frameont
_axisbelowt_rasterization_zordert_holdt
_connectedtclat	fmt_xdatat	fmt_ydatatset_cursor_propst_cachedRenderertset_navigateR	tset_navigate_modet
set_xscalet
set_yscaleRhtsetpR6t	callbackstconnecttrelimt_xcidR7t_ycid(R/tfigtrecttaxisbgtframeontsharextshareytlabeltxscaletyscaleR=RT((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pyR0asl<7

	
		



		
	
	
		
	

cO s|jS(sc
        get the axes bounding box in display space; *args* and
        *kwargs* are empty
        (tbbox(R/R<R=((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pytget_window_extent�scC s�tj|�|_|jdj|j�|jdj|j�tj|�|_|jdj|j�|jdj|j�|j�dS(sAmove this out of __init__ because non-separable axes don't use ittbottomttoptlefttrightN(tmaxistXAxisR6R�t
register_axistYAxisR7t_update_transScale(R/((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pyR��scC sxtjj||�tj|j|j�|_tjj	�|_
tjj	�|_tjtj
��|_|j�dS(s|
        Set the class:`~matplotlib.axes.Axes` figure

        accepts a class:`~matplotlib.figure.Figure` instance
        N(R�R�R�R�tTransformedBboxRttransFigureR�R�tunittdataLimtviewLimtTransformWrappertIdentityTransformt
transScalet_set_lim_and_transforms(R/R�((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pyR��scC s�tj|j�|_tjtj��|_tjtj|j	|j��|_
|j|j
|j|_tj|j|j�|_
tj|j|j�|_dS(s@
        set the *dataLim* and *viewLim*
        :class:`~matplotlib.transforms.Bbox` attributes and the
        *transScale*, *transData*, *transLimits* and *transAxes*
        transformations.

        .. note::
            This method is primarily used by rectilinear projections
            of the :class:`~matplotlib.axes.Axes` class, and is meant
            to be overridden by new kinds of projection axes that need
            different transformations and limits. (See
            :class:`~matplotlib.projections.polar.PolarAxes` for an
            example.
        N(R�tBboxTransformToR�t	transAxesR�R�R�tBboxTransformFromR�R�ttransLimitst	transDatatblended_transform_factoryt_xaxis_transformt_yaxis_transform(R/((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pyR�	stgridcC s]|dkr|jS|dkr0|jdj�S|dkrM|jdj�Std��dS(s�
        Get the transformation used for drawing x-axis labels, ticks
        and gridlines.  The x-direction is in data coordinates and the
        y-direction is in axis coordinates.

        .. note::
            This transformation is primarily used by the
            :class:`~matplotlib.axis.Axis` class, and is meant to be
            overridden by new kinds of projections that may need to
            place axis elements in different locations.
        R�ttick1R�ttick2R�sunknown value for whichN(R�R�tget_spine_transformR(R/twhich((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pytget_xaxis_transform/scC s:|jdd�tjdd|d|jj�ddfS(s�
        Get the transformation used for drawing x-axis labels, which
        will add the given amount of padding (in points) between the
        axes and the label.  The x-direction is in data coordinates
        and the y-direction is in axis coordinates.  Returns a
        3-tuple of the form::

          (transform, valign, halign)

        where *valign* and *halign* are requested alignments for the
        text.

        .. note::
            This transformation is primarily used by the
            :class:`~matplotlib.axis.Axis` class, and is meant to be
            overridden by new kinds of projections that may need to
            place axis elements in different locations.
        R�R�ii����gR@R�tcenter(R�R�tScaledTranslationtfiguretdpi_scale_trans(R/t
pad_points((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pytget_xaxis_text1_transformFs
cC s6|jdd�tjd|d|jj�ddfS(s�
        Get the transformation used for drawing the secondary x-axis
        labels, which will add the given amount of padding (in points)
        between the axes and the label.  The x-direction is in data
        coordinates and the y-direction is in axis coordinates.
        Returns a 3-tuple of the form::

          (transform, valign, halign)

        where *valign* and *halign* are requested alignments for the
        text.

        .. note::
            This transformation is primarily used by the
            :class:`~matplotlib.axis.Axis` class, and is meant to be
            overridden by new kinds of projections that may need to
            place axis elements in different locations.
        R�R�igR@R�R�(R�R�R�R�R�(R/R�((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pytget_xaxis_text2_transform^s
cC s]|dkr|jS|dkr0|jdj�S|dkrM|jdj�Std��dS(s�
        Get the transformation used for drawing y-axis labels, ticks
        and gridlines.  The x-direction is in axis coordinates and the
        y-direction is in data coordinates.

        .. note::
            This transformation is primarily used by the
            :class:`~matplotlib.axis.Axis` class, and is meant to be
            overridden by new kinds of projections that may need to
            place axis elements in different locations.
        R�R�R�R�R�sunknown value for whichN(R�R�R�R(R/R�((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pytget_yaxis_transformvscC s:|jdd�tjd|dd|jj�ddfS(s�
        Get the transformation used for drawing y-axis labels, which
        will add the given amount of padding (in points) between the
        axes and the label.  The x-direction is in axis coordinates
        and the y-direction is in data coordinates.  Returns a 3-tuple
        of the form::

          (transform, valign, halign)

        where *valign* and *halign* are requested alignments for the
        text.

        .. note::
            This transformation is primarily used by the
            :class:`~matplotlib.axis.Axis` class, and is meant to be
            overridden by new kinds of projections that may need to
            place axis elements in different locations.
        R�R�i����gR@iR�R�(R�R�R�R�R�(R/R�((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pytget_yaxis_text1_transform�s
cC s6|jdd�tj|dd|jj�ddfS(s�
        Get the transformation used for drawing the secondary y-axis
        labels, which will add the given amount of padding (in points)
        between the axes and the label.  The x-direction is in axis
        coordinates and the y-direction is in data coordinates.
        Returns a 3-tuple of the form::

          (transform, valign, halign)

        where *valign* and *halign* are requested alignments for the
        text.

        .. note::

            This transformation is primarily used by the
            :class:`~matplotlib.axis.Axis` class, and is meant to be
            overridden by new kinds of projections that may need to
            place axis elements in different locations.
        R�R�gR@iR�R�(R�R�R�R�R�(R/R�((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pytget_yaxis_text2_transform�s
cC s}|jjtj|jj�|jj���t|d�ryx9|jD]+}y|j	j
�WqGtk
rqqGXqGWndS(Ntlines(R�tsetR�R�R6t
get_transformR7RAR�t_transformed_patht
invalidatetAttributeError(R/RD((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pyR��s	
cC s$|r|jj�S|jj�SdS(s1Return the a copy of the axes rectangle as a BboxN(R�R�R(R/toriginal((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pytget_position�s
tbothcC sit|tj�s'tjj|�}n|dkrF|jj|�n|dkre|jj|�ndS(s�
        Set the axes position with::

          pos = [left, bottom, width, height]

        in relative 0,1 coords, or *pos* can be a
        :class:`~matplotlib.transforms.Bbox`

        There are two position variables: one which is ultimately
        used, but which may be modified by :meth:`apply_aspect`, and a
        second which is the starting point for :meth:`apply_aspect`.


        Optional keyword arguments:
          *which*

            ==========   ====================
            value        description
            ==========   ====================
            'active'     to change the first
            'original'   to change the second
            'both'       to change both
            ==========   ====================

        R�tactiveR�N(R�R�(R�soriginal(R�R�tBboxBaseR�R�RR�R�(R/tposR�((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pytset_position�scC s)|jdt�}|j|dd�dS(s.Make the original position the active positionR�R�R�N(R�R	R�(R/R�((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pytreset_position�scC s
||_dS(s�
        set axes_locator

        ACCEPT : a callable object which takes an axes instance and renderer and
                 returns a bbox.
        N(t
_axes_locator(R/tlocator((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pyR��scC s|jS(s%
        return axes_locator
        (R�(R/((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pytget_axes_locatorscC s@|j|j�|j�s/|j|j�n|j|�dS(s3set the boilerplate props for artists added to axesN(R�R�tis_transform_sett
set_transformR�R�(R/ta((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pyt_set_artist_propsscC stjddd�S(s[
        Returns the patch used to draw the background of the axes.  It
        is also used as the clipping path for any data elements on the
        axes.

        In the standard axes, this is a rectangle, but in other
        projections it may not be.

        .. note::
            Intended to be overridden by new projection types.
        gg�?(gg(Rct	Rectangle(R/((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pyt_gen_axes_patchsgtinchescC s\itjj|d�d6tjj|d�d6tjj|d�d6tjj|d�d6S(sg
        Returns a dict whose keys are spine names and values are
        Line2D or Patch instances. Each element is used to draw a
        spine of the axes.

        In the standard axes, this is a single line segment, but in
        other projections it may not be.

        .. note::
            Intended to be overridden by new projection types.
        R�R�R�R�(tmspinestSpinetlinear_spine(R/t	locationstoffsetR9((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pyR�s
c
C s�|jj�|jj�x'|jj�D]\}}|j�q*Wt|_tjd�|_	|j
dk	r�|j
jj|j_|j
jj
|j_
|j
j�\}}|j||dtdd�|jj|j
jj��n|jjd�|jdk	r�|jjj|j_|jjj
|j_
|jj�\}}|j||dtdd�|jj|jjj��n|jjd�t|_t|_d|_d|_t|_|j�t|�|_t|d�|_td|_ g|_!g|_"g|_#g|_$g|_%g|_&d|_'d|_(g|_)|j*|j �t+j,d	td
�}t-j.dd|j/j0�|_1t2j3ddddddd|dddd�|_4|j4j5|j6|j1�|j4j7d�|j8|j4�|j9�|_:|_;|j:j<|j/�|j:j=|j>�|j:j?d�|j:j@d�|j:j5|j6�t|_A|jjB|j:�|jjB|j:�|jCjD�|jEjD�dS(sClear the current axestxlim_changedtylim_changedtemitR�tlineariR`s	axes.gridtsizesaxes.titlesizegg@gR@RTg�?RUg�?ttextRtfontpropertiestverticalalignmenttbaselinethorizontalalignmentR�RN(R	R
gr�qDZ?(FR6R�R7R�t	iteritemsR	tignore_existing_data_limitstcbooktCallbackRegistryR�R�Rtmajortminortget_xlimtset_xlimR
t	set_scalet	get_scaleR�tget_ylimtset_ylimt
_autoscaleXont
_autoscaleYont_xmargint_ymargint_tightR�R*t
_get_linest_get_patches_for_fillRt_gridOnR�tpatchesttextsttablestartiststimagest_current_imagetlegend_tcollectionsR�tfont_managertFontPropertiesR�R�R�R�ttitleOffsetTranstmtexttTextttitleR�R�tset_clip_boxRRtpatcht	axesPatchR�t
set_facecolorR�t
set_edgecolort
set_linewidthtaxisont
set_clip_pathR�tcleanR�(R/tnametspinetx0tx1ty0ty1tprops((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pyR�/s|

						

											
cC std��dS(Ns.Axes.frame was removed in favor of Axes.spines(R�(R/((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pyt	get_frame�scC s|j�dS(sclear the axesN(R�(R/((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pytclear�scC s$|jj|�|jj|�dS(s�
        Set the color cycle for any future plot commands on this Axes.

        *clist* is a list of mpl color specifiers.
        N(R$R.R%(R/R(((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pyR.�scC s|jS(s"return the HOLD status of the axes(R�(R/((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pytishold�scC s)|dkr|j|_n	||_dS(s0
        call signature::

          hold(b=None)

        Set the hold state.  If *hold* is *None* (default), toggle the
        *hold* state.  Else set the *hold* state to boolean value *b*.

        Examples:

        * toggle hold:
          >>> hold()
        * turn hold on:
          >>> hold(True)
        * turn hold off
          >>> hold(False)


        When hold is True, subsequent plot commands will be added to
        the current axes.  When hold is False, the current axes and
        figure will be cleared on the next plot command

        N(RR�(R/tb((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pythold�scC s|jS(N(t_aspect(R/((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pyt
get_aspect�scC s{|dkrd|_n'|dkr0d|_nt|�|_|dk	r[|j|�n|dk	rw|j|�ndS(s�
        *aspect*

          ========   ================================================
          value      description
          ========   ================================================
          'auto'     automatic; fill position rectangle with data
          'normal'   same as 'auto'; deprecated
          'equal'    same scaling from data to plot units for x and y
           num       a circle will be stretched such that the height
                     is num times the width. aspect=1 is the same as
                     aspect='equal'.
          ========   ================================================

        *adjustable*

          ============   =====================================
          value          description
          ============   =====================================
          'box'          change physical size of axes
          'datalim'      change xlim or ylim
          'box-forced'   same as 'box', but axes can be shared
          ============   =====================================

        'box' does not allow axes sharing, as this can cause
        unintended side effect. For cases when sharing axes is
        fine, use 'box-forced'.

        *anchor*

          =====   =====================
          value   description
          =====   =====================
          'C'     centered
          'SW'    lower left corner
          'S'     middle of bottom edge
          'SE'    lower right corner
          etc.
          =====   =====================

        tnormalR�tequalN(RLsauto(RJRkRtset_adjustableR�(R/taspectt
adjustabletanchor((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pyR��s*cC s|jS(N(R�(R/((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pytget_adjustable�scC sd|dkrT||jks*||jkrH|dkrHtd��qHn||_ntd��dS(s>
        ACCEPTS: [ 'box' | 'datalim' | 'box-forced']
        R�R�s
box-forceds,adjustable must be "datalim" for shared axess$argument must be "box", or "datalim"N(sboxsdatalims
box-forced(R�R�RR�(R/RP((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pyRN�scC s|jS(N(t_anchor(R/((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pyt
get_anchorscC s_|tjjj�ks*t|�dkr6||_n%tddjtjjj����dS(su
        *anchor*

          =====  ============
          value  description
          =====  ============
          'C'    Center
          'SW'   bottom left
          'S'    bottom
          'SE'   bottom right
          'E'    right
          'NE'   top right
          'N'    top
          'NW'   top left
          'W'    left
          =====  ============

        isargument must be among %ss, N(	R�R�tcoefstkeysRhRSRR�tBBox(R/RQ((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pyR�s*cC sd|j�\}}|j�\}}ttj||�d�}ttj||�d�}||S(s�
        Returns the aspect ratio of the raw data.

        This method is intended to be overridden by new projection
        types.
        g���KH�9(t
get_xboundt
get_yboundRntmathtfabs(R/txmintxmaxtymintymaxtxsizetysize((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pytget_data_ratio s
cC s�|j�\}}|j�\}}ttjtj|�tj|��d�}ttjtj|�tj|��d�}||S(s
        Returns the aspect ratio of the raw data in log scale.
        Will be used when both axis scales are in log.
        g���KH�9(RXRYRnRZR[tlog10(R/R\R]R^R_R`Ra((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pytget_data_ratio_log0s
..c0C s�|d	kr!|jdt�}n|j�}|jdkr�|j�|j�}}|dkrv|dkrvd}q�|dkr�|dkr�d}q�|dkr�|dks�|dkr�|dkr�|dk	r�tjd||f�d}q�q�nd}|dkr"|j	|dd�d	S|d
kr7d}n|}||j
ks[||jkr�|jdkr�d
|_tjd�q�n|j
�j�\}}||}	|jdkr-|dkr�||j�}
n||j�}
|j�}|j|
||	�}|j	|j|j�|�d�d	S|j	|dd�|j�\}
}|j�\}}|dkr�tj|
�tj|�}
}tj|�tj|�}}nttj||
�d�}ttj||�d�}|j\}}}}|	||}
|
|}|||d}t|�dkr>d	S|dkr�|j}tj|j�tj|j�}tj|j �tj|j!�}d|}d|}n#|j}d|j"}d|j#}||}||}||} ||}!|!|}"| |}#d}$d}%||jko4||j
k}&||j
koR||jk}'|&rr|'rrtjd�d	S|&r�t$}(nc||$kr�||%kr�|#dkr�|dkp�|"dko�|dk})n|dk})|'p�|)}(|(rTd||}*|*| d}+|*| d},|dkr>|j%d|+d|,f�q�|j%|+|,f�ngd|
|}-|-|!d}.|-|!d}/|dkr�|j&d|.d|/f�n|j&|.|/f�d	S(sp
        Use :meth:`_aspect` and :meth:`_adjustable` to modify the
        axes box or the view limits.
        R�tpolarRtlogR�s:aspect is not supported for Axes with xscale=%s, yscale=%sR�R�NRMiR�R�s7shared axes: "adjustable" is being changed to "datalim"s
box-forcedg���KH�9g�?g{�G�zt?g�������?is9adjustable='datalim' cannot work with shared x and y axesg�?g@g$@(sboxs
box-forced('RR�R	RKR>t
get_xscalet
get_yscaleR%R&R�R�R�R�t
get_figuretget_size_inchesRdRbR�tshrunk_to_aspecttanchoredRTRXRYRZRcRnR[R�tabsR�RAR@RCRBtwidththeightR
t
set_yboundt
set_xbound(0R/tpositionROR�R�taspect_scale_modetAtfigWtfigHt
fig_aspectt
box_aspecttpbtpb1R\R]R^R_R`RatlRHtwtht
data_ratiot
y_expandertdLtdL_widtht	dL_heighttxrtyrtxmargtymargtYsizetXsizetXmargtYmargtxmtymtchangextchangeytadjust_ytadjytycRBRCtxcR@RA((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pytapply_aspect>s�				

""
	""

	








	c	O s�t|�dkr�t|d�r�|dj�}|dkrK|j�n*|dkrd|j�n|dkre|jt�|jd	�|jdt	�|dkr�|jddd�qu|dkr�|jddd
dd�|jt	�qu|dkr|jdt�|jt	�qu|d
kru|jdt�|jt	�|jddd
dd�qunt
d|��|j�\}}|j�\}}||||fSy|dWn�t
k
re|jdt�}|jdd�}|jdd�}|j|||�\}}|jdd�}|jdd�}|j|||�\}}||||fSX|d}t|�dkr�t
d��n|j|d|dg�|j|d|dg�|S(s�
        Convenience method for manipulating the x and y view limits
        and the aspect ratio of the plot.

        *kwargs* are passed on to :meth:`set_xlim` and
        :meth:`set_ylim`
        iiRRRMttighttscaledRLR�timageRPR�R�RQR�s-Unrecognized string %s to axis; try on or offRR\R]R^R_is$v must contain [xmin xmax ymin ymax]ii(sequalstightR�snormalsautoR�N(RhRtlowertset_axis_ontset_axis_offtset_autoscale_onR	R�tautoscale_viewR
RRRt
IndexErrorRlRRR(	R/RrR=RR\R]R^R_R((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pytaxis�sX"







cC std��dS(s[
        Return a list of artists the axes contains.

        .. deprecated:: 0.98
        sUse get_children insteadN(R'(R/((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pytget_child_artistsscC stjdt�|jS(sReturn the axes Rectangle framesuse ax.patch instead(R%R&R'R6(R/((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pyREscC s|jS(sBReturn the legend.Legend instance, or None if no legend is defined(R-(R/((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pyt
get_legendscC stjd|j�S(s2return a list of Axes images contained by the Axest	AxesImage(Rtsilent_listR+(R/((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pyt
get_imagesscC stjd|j�S(s,Return a list of lines contained by the AxesR[(RR�R�(R/((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pyt	get_lines!scC s|jS(sReturn the XAxis instance(R6(R/((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pyt	get_xaxis%scC stjd|jj��S(s2Get the x grid lines as a list of Line2D instancessLine2D xgridline(RR�R6t
get_gridlines(R/((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pytget_xgridlines)scC stjd|jj��S(s1Get the xtick lines as a list of Line2D instancessText xtickline(RR�R6t
get_ticklines(R/((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pytget_xticklines.scC s|jS(sReturn the YAxis instance(R7(R/((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pyt	get_yaxis3scC stjd|jj��S(s2Get the y grid lines as a list of Line2D instancessLine2D ygridline(RR�R7R�(R/((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pytget_ygridlines7scC stjd|jj��S(s1Get the ytick lines as a list of Line2D instancessLine2D ytickline(RR�R7R�(R/((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pytget_yticklines;scC swt|tjj�r=|jd|jkrjtd��qjn-||jkrj||jkrjtd��n||_dS(sZ
        helper for :func:`~matplotlib.pyplot.sci`;
        do not use elsewhere.
        is"ContourSet must be in current AxessAArgument must be an image, collection, or ContourSet in this AxesN(R�t
matplotlibtcontourt
ContourSetR.RR+R,(R/tim((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pyt_sciAscC s|jS(sZ
        helper for :func:`~matplotlib.pyplot.gci`;
        do not use elsewhere.
        (R,(R/((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pyt_gciOscC s:t|j�t|j�t|j�t|j�dkS(s�Return *True* if any artists have been added to axes.

        This should not be used to determine whether the *dataLim*
        need to be updated, and may not actually be useful for
        anything.
        i(RhR.R+R�R'(R/((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pythas_dataVs
&c sP|j���jj|��j|�|j�j��fd�|_|S(sf
        Add any :class:`~matplotlib.artist.Artist` to the axes.

        Returns the artist.
        c s�jj|�S(N(R*tremove(R}(R/(sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pyt<lambda>ms(R�R*RoRR<R6t_remove_method(R/R�((R/sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pyt
add_artistcs

c s�|j�}|s/|jdt�j��n�jj|��j|�|j�dkrq|j�j	�n|r�|j
r�t|j
�r��j|j�j
��q�n�fd�|_|S(s�
        Add a :class:`~matplotlib.collections.Collection` instance
        to the axes.

        Returns the collection.
        s
_collection%dc s�jj|�S(N(R.R�(R}(R/(sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pyR��sN(t	get_labelR�RhR.RoRt
get_clip_pathRR<R6t_pathstupdate_datalimtget_datalimR�R�(R/t
collectiontautolimR�((R/sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pytadd_collectionps
c s��j|�|j�dkr2|j�j�n�j|�|j�sh|jdt�j	��n�j	j
|��fd�|_|S(sv
        Add a :class:`~matplotlib.lines.Line2D` to the list of plot
        lines

        Returns the line.
        s_line%dc s�jj|�S(N(R�R�(R}(R/(sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pyR��sN(RR�RR<R6t_update_line_limitsR�R�RhR�RoR�(R/RD((R/sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pytadd_line�s

cC sV|j�}|jjdkrR|jj||jd|jd|j�t|_ndS(Nitupdatextupdatey(	tget_pathtverticesR
R�tupdate_from_pathRtx_isdataty_isdataR
(R/RDtp((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pyR��s	
c se�j|�|j�dkr2|j�j�n�j|��jj|��fd�|_|S(s
        Add a :class:`~matplotlib.patches.Patch` *p* to the list of
        axes patches; the clipbox will be set to the Axes clipping
        box.  If the transform is not set, it will be set to
        :attr:`transData`.

        Returns the patch.
        c s�jj|�S(N(R'R�(R}(R/(sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pyR��sN(	RR�RR<R6t_update_patch_limitsR'RoR�(R/R�((R/sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pyt	add_patch�s


cC s�t|tj�r0|j�s,|j�r0dS|j�j}|jdkr�|j�j	|�}|j
�|jkr�|j
�|jj�}|j	|�}n|j
|d|jd|j�ndS(s$update the data limits for patch *p*NiR�R�(R�RcRt	get_widtht
get_heightR�R�R
tget_patch_transformt	transformtget_data_transformR�tinvertedR�R�R�(R/R6R�txysR�((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pyR��s	c sC�j|��jj|�|j�j��fd�|_|S(s�
        Add a :class:`~matplotlib.tables.Table` instance to the
        list of axes tables

        Returns the table.
        c s�jj|�S(N(R)R�(R}(R/(sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pyR��s(RR)RoR<R6R�(R/ttab((R/sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pyt	add_table�s

cC s_|jjt�t|_x|jD]}|j|�q#Wx|jD]}|j|�qDWdS(s�
        Recompute the data limits based on current artists.

        At present, :class:`~matplotlib.collections.Collection`
        instances are not supported.
        N(R�tignoreR	RR�R�R'R�(R/RDR�((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pyR��s		cC smt|�rt|�rdStj|�s>tj|�}n|jj||jd|d|�t	|_dS(s@Update the data lim bbox with seq of xy tups or equiv. 2-D arrayNR�R�(
titerableRhRt
isMaskedArrayROtasarrayR�tupdate_from_data_xyRR
(R/R�R�R�((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pyR��s
cC sCt|�rt|�rdS|jj|||j�t|_dS(s,Update the data lim bbox with seq of xy tupsN(R�RhR�tupdate_from_dataRR
(R/RTRU((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pytupdate_datalim_numerix�scC s)|jjtjj|j|g��dS(so
        Update the datalim to include the given
        :class:`~matplotlib.transforms.Bbox` *bounds*
        N(R�R�R�R�tunion(R/R�((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pytupdate_datalim_bounds�scC sO|jdks|jdkr"dS|dk	rS|jj�sS|jj|�qSn|dk	r�|jj�s�|jj|�q�n|dk	rK|jd|jj�}||jjkr�|jj|�|dk	r�|jj|�q�n|jd|jj�}||jjkrK|jj|�|dk	rH|jj|�qHqKndS(sAlook for unit *kwargs* and update the axis instances as necessaryNR4R5(R6RR7t
have_unitsRLR8R9R:(R/txdatatydataR=R4R5((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pyt_process_unit_infos&cC s|jj|�dS(sd
        return *True* if the given *mouseevent* (in display coords)
        is in the Axes
        i(R6tcontains(R/t
mouseevent((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pytin_axes+scC s|jo|jS(sS
        Get whether autoscaling is applied for both axes on plot commands
        (RR (R/((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pytget_autoscale_on2scC s|jS(sT
        Get whether autoscaling for the x-axis is applied on plot commands
        (R(R/((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pytget_autoscalex_on8scC s|jS(sT
        Get whether autoscaling for the y-axis is applied on plot commands
        (R (R/((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pytget_autoscaley_on>scC s||_||_dS(sl
        Set whether autoscaling is applied on plot commands

        accepts: [ *True* | *False* ]
        N(RR (R/RH((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pyR�Ds	cC s
||_dS(s{
        Set whether autoscaling for the x-axis is applied on plot commands

        accepts: [ *True* | *False* ]
        N(R(R/RH((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pytset_autoscalex_onMscC s
||_dS(s{
        Set whether autoscaling for the y-axis is applied on plot commands

        accepts: [ *True* | *False* ]
        N(R (R/RH((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pytset_autoscaley_onUscC s4|dks|dkr'td��n||_dS(s�
        Set padding of X data limits prior to autoscaling.

        *m* times the data interval will be added to each
        end of that interval before it is used in autoscaling.

        accepts: float in range 0 to 1
        iismargin must be in range 0 to 1N(RR!(R/tm((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pytset_xmargin]s	cC s4|dks|dkr'td��n||_dS(s�
        Set padding of Y data limits prior to autoscaling.

        *m* times the data interval will be added to each
        end of that interval before it is used in autoscaling.

        accepts: float in range 0 to 1
        iismargin must be in range 0 to 1N(RR"(R/R�((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pytset_ymarginjs	cO s|r|r|j|jfS|jdt�}|jdd
�}|jdd
�}t|�dkrw|d}}n-t|�dkr�|\}}ntd��|d
k	r�|j|�n|d
k	r�|j|�n|d
k	}|d
k	}|j	d|d|d	|�d
S(s@
        Convenience method to set or retrieve autoscaling margins.

        signatures::

            margins()

        returns xmargin, ymargin

        ::

            margins(margin)

            margins(xmargin, ymargin)

            margins(x=xmargin, y=ymargin)

            margins(..., tight=False)

        All three forms above set the xmargin and ymargin parameters.
        All keyword parameters are optional.  A single argument
        specifies both xmargin and ymargin.  The *tight* parameter
        is passed to :meth:`autoscale_view`, which is executed after
        a margin is changed; the default here is *True*, on the
        assumption that when margins are specified, no additional
        padding to match tick marks is usually desired.  Setting
        *tight* to *None* will preserve the previous setting.

        Specifying any margin changes only the autoscaling; for example,
        if *xmargin* is not None, then *xmargin* times the X data
        interval will be added to each end of that interval before
        it is used in autoscaling.

        R�RTRUiiis%more than two arguments were suppliedtscalextscaleyN(
R!R"R8R	RRhRR�R�R�(R/R<R\R�tmxtmyR�R�((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pytmarginsxs"#cC s
||_dS(sI
        Set zorder value below which artists will be rasterized
        N(R�(R/tz((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pytset_rasterization_zorder�scC s|jS(sI
        Get zorder value below which artists will be rasterized
        (R�(R/((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pytget_rasterization_zorder�scC s�|dkrt}t}nZt}t}|dkrNt|�|_|j}n|d	krut|�|_|j}n|jd|d|d|�dS(
s�
        Convenience method for simple axis view autoscaling.
        It turns autoscaling on or off, and then,
        if autoscaling for either axis is on, it performs
        the autoscaling on the specified axis or axes.

        *enable*: [True | False | None]
            True (default) turns autoscaling on, False turns it off.
            None leaves the autoscaling state unchanged.

        *axis*: ['x' | 'y' | 'both']
            which axis to operate on; default is 'both'

        *tight*: [True | False | None]
            If True, set view limits to data limits;
            if False, let the locator and margins expand the view limits;
            if None, use tight scaling if the only artist is an image,
            otherwise treat *tight* as False.
            The *tight* setting is retained for future autoscaling
            until it is explicitly changed.


        Returns None.
        RTR�RUR�R�R�N(RTsboth(RUsboth(RR	R
tboolRR R�(R/tenableR�R�R�R�((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pyt	autoscale�s	cC s�|dkrW|jpQt|j�dkoQt|j�dkoQt|j�dk}nt|�}|_|r�|jr�|jj	|�}g|D]}|j
^q�}tjj
|�}|j\}	}
|jj�}y|j|	|
�\}	}
Wn5tk
r*tj|	|
dtdd�\}	}
nX|jdkrb|
|	|j}|	|8}	|
|7}
n|s�|j|	|
�\}	}
n|j|	|
�n|r�|jr�|jj	|�}
g|
D]}|j
^q�}tjj
|�}|j\}}|jj�}y|j||�\}}Wn5tk
rVtj||dtdd�\}}nX|jdkr�|||j}||8}||7}n|s�|j||�\}}n|j||�ndS(s

        Autoscale the view limits using the data limits. You can
        selectively autoscale only a single axis, eg, the xaxis by
        setting *scaley* to *False*.  The autoscaling preserves any
        axis direction reversal that has already been done.

        The data limits are not updated automatically when artist
        data are changed after the artist has been added to an
        Axes instance.  In that case, use
        :meth:`matplotlib.axes.Axes.relim`
        prior to calling autoscale_view.
        it
increasingtexpanderg�������?N(RR#RhR+R�R'R�RR�tget_siblingsR�R�R�R�t	intervalxR6tget_major_locatortnonsingularR�R
R!tview_limitsRqR R�t	intervalyR7R"Rp(R/R�R�R�R#txsharedtaxtdltbbR@RAtxlocatortdeltatysharedRBRCtylocator((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pyR��sR






c
C s,|dkr|j}n|dkr3td��n|j�sCdS|jd�|j�}|r�|||�}|j|�n
|j�g}|j|j�|j|j	�|j|j
�|j|j�|j|j�|j
rY|rY|jr|jjd�|jjd�n |jjd�|jjd�|j|j|jg�n|sr|j|j�n|j|j�|jdk	r�|j|j�n|j
r�|jr�|j|jj��ng|D]!}|j�s�|j|f^q�}t|j�dks|j�rS|jg|jD]}|j|f^q.�t}	nt}	|j dt!d��|j"}
t|�dkr�|dd|
kr�|j#�g|D]}|d|
kr�|^q�}g|D]}|d|
kr�|^q�}ng}|j
r(|jr(|j$j%|�n|	r�g|jD]!}|j�r8|j|f^q8}
|
j dd	��|j&�}g|
D]$\}}|j'|�ddf^q�}|j(j)\}}}}|t*|�dt*|�d}|t*|�dt*|�d}t+j,|||�}t|_-|j(j.\}}}}|j/�}|j0|j(�|j1t2j3|j$j4�|j$j5���|j6|t*|�t*|�|�|j7�n|r�x!|D]\}}|j%|�q�W|j8�nx!|D]\}}|j%|�q�W|j9d�||_dS(
s*Draw everything (plot lines, axes, labels)sNo renderer definedNR,g�?g@iREicS s|dS(Ni((RT((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pyR�ys(:RR�tRuntimeErrortget_visiblet
open_groupR�R�textendR.R'R�R(R*R;R�R6t
set_zorderR7RoR4R)R-R�R�t
itervaluestget_animatedtzorderRhR+toption_image_nocompositeR
R	tsortRR�tstart_rasterizingR6tdrawtget_image_magnificationt
make_imageR�textentstroundtmimagetfrom_imagestis_grayscaleR�tnew_gctset_clip_rectangleR<R�tTransformedPathR�R�t
draw_imagetrestoretstop_rasterizingtclose_group(R/trenderertinframeR�R�R*R�tdsuR�t
_do_compositetrasterization_zorderR{tdsu_rasterizedt
zorder_imagestmagR�timsRHtrttRnRoR|R}tgcR((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pyR%s�

	
!!,		&
),!1""			"


cC s|j|j�dS(s�
        This method can only be used after an initial draw which
        caches the renderer.  It is used to efficiently update Axes
        data (axis ticks, labels, etc are not updated)
        N(RR�(R/R�((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pytdraw_artist�scC s|j|jdt�dS(s�
        This method can only be used after an initial draw which
        caches the renderer.  It is used to efficiently update Axes
        data (axis ticks, labels, etc are not updated)
        R"N(RR�R	(R/((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pytredraw_in_frame�scC s|jS(N(R�(R/((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pytget_renderer_cache�scC s�|jdkrtd��ng|jj�D]}|j|f^q.}|jdd��|j}|j�x!|D]\}}|j|�qvWdS(NsYou must first call ax.draw()REcS s|dS(Ni((RT((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pyR��s(	t
_lastRendererRRtanimatedRVRRtblitR(R/R�R#R!ttmp((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pyt__draw_animate�s+	
cC s|jS(s?
        Get whether the axes rectangle patch is drawn
        (R�(R/((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pytget_frame_on�scC s
||_dS(sf
        Set whether the axes rectangle patch is drawn

        ACCEPTS: [ *True* | *False* ]
        N(R�(R/RH((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pytset_frame_on�scC s|jS(s7
        Get whether axis below is true or not
        (R�(R/((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pyt
get_axisbelow�scC s
||_dS(s�
        Set whether the axis ticks and gridlines are above or below most artists

        ACCEPTS: [ *True* | *False* ]
        N(R�(R/RH((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pyt
set_axisbelow�sRcK sWt|�rt}nt|�}|jj|d||�|jj|d||�dS(s�
        call signature::

          grid(self, b=None, which='major', **kwargs)

        Set the axes grids on or off; *b* is a boolean.  (For MATLAB
        compatibility, *b* may also be a string, 'on' or 'off'.)

        If *b* is *None* and ``len(kwargs)==0``, toggle the grid state.  If
        *kwargs* are supplied, it is assumed that you want a grid and *b*
        is thus set to *True*.

        *which* can be 'major' (default), 'minor', or 'both' to control
        whether major tick grids, minor tick grids, or both are affected.

        *kawrgs* are used to set the grid line properties, eg::

          ax.grid(color='r', linestyle='-', linewidth=2)

        Valid :class:`~matplotlib.lines.Line2D` kwargs are

        %(Line2D)s
        R�N(RhR	R
R6R�R7(R/RHR�R=((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pyR��s
	c
K s�|jdd�j�}|jdd�}|jdd�}|jdd�j�}|dk	r�y|\}}||dWq�ttfk
r�td��q�Xn|d	 d
kr�t}nW|dkr�t}|dkr�t}	qt}	td
�n|dkrd}n	td�yW|dk	r�|dks<|dkrU|jj	j
j|�n|dksm|dkr�|jj	j
j|�q�n|dk	r�|dks�|dkr�|jj	j
j
|�n|dks�|dkr�|jj	j
j
|�q�n|dk	rk|dks|dkr7|jj	j
j|�n|dksO|dkrk|jj	j
j|�qknWntk
r�td��nXdS(sw
        Convenience method for manipulating the ScalarFormatter
        used by default for linear axes.

        Optional keyword arguments:

          ============   =========================================
          Keyword        Description
          ============   =========================================
          *style*        [ 'sci' (or 'scientific') | 'plain' ]
                         plain turns off scientific notation
          *scilimits*    (m, n), pair of integers; if *style*
                         is 'sci', scientific notation will
                         be used for numbers outside the range
                         10`-m`:sup: to 10`n`:sup:.
                         Use (0,0) to include all numbers.
          *useOffset*    [True | False | offset]; if True,
                         the offset will be calculated as needed;
                         if False, no offset will be used; if a
                         numeric offset is specified, it will be
                         used.
          *axis*         [ 'x' | 'y' | 'both' ]
          ============   =========================================

        Only the major ticks are affected.
        If the method is called when the
        :class:`~matplotlib.ticker.ScalarFormatter` is not the
        :class:`~matplotlib.ticker.Formatter` being used, an
        :exc:`AttributeError` will be raised.

        tstyleRt	scilimitst	useOffsetR�R�is*scilimits must be a sequence of 2 integersitscitplaintcommascomma style remains to be addeds%s is not a valid style valueRTRUs0This method only works with the ScalarFormatter.N(R=R>(R8R�RRRBR	R
tNotImplementedErrorR6Rt	formattertset_scientificR7tset_powerlimitst
set_useOffsetR�(
R/R=R9R:R;R�R�tntsbtcb((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pytticklabel_format�sP 				 
cK sv|dk}|d	k}|r7|jj�j|�n|rV|jj�j|�n|jd|d|d|�dS(
s�
        Convenience method for controlling tick locators.

        Keyword arguments:

        *axis*
            ['x' | 'y' | 'both']  Axis on which to operate;
            default is 'both'.

        *tight*
            [True | False | None] Parameter passed to :meth:`autoscale_view`.
            Default is None, for no change.

        Remaining keyword arguments are passed to directly to the
        :meth:`~matplotlib.ticker.MaxNLocator.set_params` method.

        Typically one might want to reduce the maximum number
        of ticks and use tight bounds when plotting small
        subplots, for example::

            ax.locator_params(tight=True, nbins=4)

        Because the locator is involved in autoscaling,
        :meth:`autoscale_view` is called automatically after
        the parameters are changed.

        This presently works only for the
        :class:`~matplotlib.ticker.MaxNLocator` used
        by default on linear axes, but it may be generalized.
        RTR�RUR�R�R�N(RTsboth(RUsboth(R6R�t
set_paramsR7R�(R/R�R�R=t_xt_y((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pytlocator_paramsGscK s�|d
krkt|�}|jdd�|jdd�|jdd�|jdd�|jj|�n|dkr�t|�}|jdd�|jd	d�|jd
d�|jdd�|jj|�ndS(s�
        Convenience method for changing the appearance of ticks and
        tick labels.

        Keyword arguments:

        *axis*
            ['x' | 'y' | 'both']  Axis on which to operate;
            default is 'both'.

        *reset*
            [True | False] If *True*, set all parameters to defaults
            before processing other keyword arguments.  Default is
            *False*.

        *which*
            ['major' | 'minor' | 'both'] Default is 'major': apply
            arguments to major ticks only.

        *direction*
            ['in' | 'out'] Puts ticks inside or outside the axes.

        *length*
            Tick length in points.

        *width*
            Tick width in points.

        *color*
            Tick color; accepts any mpl color spec.

        *pad*
            Distance in points between tick and label.

        *labelsize*
            Tick label font size in points or as a string (e.g. 'large').

        *labelcolor*
            Tick label color; mpl color spec.

        *colors*
            Changes the tick color and the label color to the same value:
            mpl color spec.

        *zorder*
            Tick and label zorder.

        *bottom*, *top*, *left*, *right*
            Boolean or ['on' | 'off'], controls whether to draw the
            respective ticks.

        *labelbottom*, *labeltop*, *labelleft*, *labelright*
            Boolean or ['on' | 'off'], controls whether to draw the
            respective tick labels.

        Example::

            ax.tick_params(direction='out', length=6, width=2, colors='r')

        This will make all major ticks be red, pointing out of the box,
        and with dimensions 6 points by 2 points.  Tick labels will
        also be red.

        RTR�R�R�t	labelleftt
labelrightRUR�R�tlabeltoptlabelbottomN(RTsboth(RUsboth(tdictR8RR6tset_tick_paramsR7(R/R�R=txkwtykw((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pyttick_paramsnsAcC s
t|_dS(sturn off the axisN(R
R;(R/((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pyR��scC s
t|_dS(sturn on the axisN(R	R;(R/((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pyR��scC s|jS(s Return the axis background color(R�(R/((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pytget_axis_bgcolor�scC s||_|jj|�dS(s�
        set the axes background color

        ACCEPTS: any matplotlib color - see
        :func:`~matplotlib.pyplot.colors`
        N(R�R6R8(R/R ((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pytset_axis_bgcolor�s	cC s&|j�\}}|j||�dS(sInvert the x-axis.N(RR(R/R�R�((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pytinvert_xaxis�scC s|j�\}}||kS(s'Returns True if the x-axis is inverted.(R(R/R�R�((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pytxaxis_inverted�scC s6|j�\}}||kr(||fS||fSdS(sa
        Returns the x-axis numerical bounds where::

          lowerBound < upperBound

        N(R(R/R�R�((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pyRX�s
cC s�|dkr't|�r'|\}}n|j�\}}|dkrN|}n|dkrc|}n|j�r�||kr�|j||dd�q�|j||dd�n;||kr�|j||dd�n|j||dd�dS(s�
        Set the lower and upper numerical bounds of the x-axis.
        This method will honor axes inversion regardless of parameter order.
        It will not change the _autoscaleXon attribute.
        R�N(RR�RXRXR(R/R�tuppert	old_lowert	old_upper((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pyRq�s		cC st|jj�S(s8
        Get the x-axis range [*left*, *right*]
        (R~R�R�(R/((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pyR	sc	K sOd|kr|jd�}nd|kr<|jd�}n|r[td|j���n|dkr�t|�r�|\}}n|jd||f�|dk	r�|j|�}n|dk	r�|j|�}n|j�\}}|dkr�|}n|dkr|}n||kr>tj	ddd||f�nt
j||dt�\}}|j
j||�\}}||f|j_|dk	r�t|�|_n|rE|jjd	|�x�|jj|�D]k}||k	r�|j|jjd
td|�|j|jkr>|jjdk	r>|jjj�q>q�q�Wn||fS(
s�
        call signature::

          set_xlim(self, *args, **kwargs):

        Set the data limits for the xaxis

        Examples::

          set_xlim((left, right))
          set_xlim(left, right)
          set_xlim(left=1) # right unchanged
          set_xlim(right=1) # left unchanged

        Keyword arguments:

          *left*: scalar
            the left xlim; *xmin*, the previous name, may still be used
          *right*: scalar
            the right xlim; *xmax*, the previous name, may still be used
          *emit*: [ True | False ]
            notify observers of lim change
          *auto*: [ True | False | None ]
            turn *x* autoscaling on (True), off (False; default),
            or leave unchanged (None)

        Note: the *left* (formerly *xmin*) value may be greater than
        the *right* (formerly *xmax*).
        For example, suppose *x* is years before present.
        Then one might use::

          set_ylim(5000, 0)

        so 5000 years ago is on the left of the plot and the
        present is on the right.

        Returns the current xlimits as a length 2 tuple

        ACCEPTS: len(2) sequence of floats
        R\R]sunrecognized kwargs: %sR�s0Attempting to set identical left==right results
s6in singular transformations; automatically expanding.
sleft=%s, right=%sR�R	RR�N(R8RRVRR�R�RMRR%R&R�R�R
R6tlimit_range_for_scaleR�R�R�RR�tprocessR�R�RR�tcanvast	draw_idle(	R/R�R�RR�R\told_leftt	old_righttother((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pyR
	sH)		
cC s$ddjtj��|jj�S(Ns!return the xaxis scale string: %ss, (R�R�R�R6R(R/((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pyRgb	scK s1|jj||�|jdt�|j�dS(s�
        call signature::

          set_xscale(value)

        Set the scaling of the x-axis: %(scale)s

        ACCEPTS: [%(scale)s]

        Different kwargs are accepted, depending on the scale:
        %(scale_docs)s
        R�N(R6RR�R
R�(R/tvalueR=((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pyR�g	scC s|jjd|�S(s)Return the x ticks as a list of locationsR(R6tget_ticklocs(R/R((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pyt
get_xticksy	scC s|jj|d|�S(s[
        Set the x ticks with list of *ticks*

        ACCEPTS: sequence of floats
        R(R6t	set_ticks(R/tticksR((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pyt
set_xticks}	scC stjd|jj��S(s0Get the xtick labels as a list of Text instancessText xticklabel(RR�R6tget_majorticklabels(R/((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pytget_xmajorticklabels�	s	cC stjd|jj��S(s0Get the xtick labels as a list of Text instancessText xticklabel(RR�R6tget_minorticklabels(R/((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pytget_xminorticklabels�	s	cC stjd|jjd|��S(s0Get the xtick labels as a list of Text instancessText xticklabelR(RR�R6tget_ticklabels(R/R((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pytget_xticklabels�	s	cK s|jj||d||�S(so
        call signature::

          set_xticklabels(labels, fontdict=None, minor=False, **kwargs)

        Set the xtick labels with list of strings *labels*. Return a
        list of axis text instances.

        *kwargs* set the :class:`~matplotlib.text.Text` properties.
        Valid properties are
        %(Text)s

        ACCEPTS: sequence of strings
        R(R6tset_ticklabels(R/tlabelstfontdictRR=((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pytset_xticklabels�	scC s&|j�\}}|j||�dS(sInvert the y-axis.N(RR(R/R�R�((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pytinvert_yaxis�	scC s|j�\}}||kS(s'Returns True if the y-axis is inverted.(R(R/R�R�((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pytyaxis_inverted�	scC s6|j�\}}||kr(||fS||fSdS(sEReturn y-axis numerical bounds in the form of lowerBound < upperBoundN(R(R/R�R�((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pyRY�	s
cC s�|dkr't|�r'|\}}n|j�\}}|dkrN|}n|dkrc|}n|j�r�||kr�|j||dd�q�|j||dd�n;||kr�|j||dd�n|j||dd�dS(s�Set the lower and upper numerical bounds of the y-axis.
           This method will honor axes inversion regardless of parameter order.
           It will not change the _autoscaleYon attribute.
        R�N(RR�RYRtR(R/R�RYRZR[((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pyRp�	s		cC st|jj�S(s8
        Get the y-axis range [*bottom*, *top*]
        (R~R�R�(R/((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pyR�	sc	K s9d|kr|jd�}nd|kr<|jd�}n|r[td|j���n|dkr�t|�r�|\}}n|dk	r�|j|�}n|dk	r�|j|�}n|j�\}}|dkr�|}n|dkr�|}n||kr(tjddd||f�nt	j
||dt�\}}|jj
||�\}}||f|j_|dk	r�t|�|_n|r/|jjd|�x�|jj|�D]k}||k	r�|j|jjd	td
|�|j|jkr(|jjdk	r(|jjj�q(q�q�Wn||fS(s�
        call signature::

          set_ylim(self, *args, **kwargs):

        Set the data limits for the yaxis

        Examples::

          set_ylim((bottom, top))
          set_ylim(bottom, top)
          set_ylim(bottom=1) # top unchanged
          set_ylim(top=1) # bottom unchanged

        Keyword arguments:

          *bottom*: scalar
            the bottom ylim; the previous name, *ymin*, may still be used
          *top*: scalar
            the top ylim; the previous name, *ymax*, may still be used
          *emit*: [ True | False ]
            notify observers of lim change
          *auto*: [ True | False | None ]
            turn *y* autoscaling on (True), off (False; default),
            or leave unchanged (None)

        Note: the *bottom* (formerly *ymin*) value may be greater than
        the *top* (formerly *ymax*).
        For example, suppose *y* is depth in the ocean.
        Then one might use::

          set_ylim(5000, 0)

        so 5000 m depth is at the bottom of the plot and the
        surface, 0 m, is at the top.

        Returns the current ylimits as a length 2 tuple

        ACCEPTS: len(2) sequence of floats
        R^R_sunrecognized kwargs: %ss0Attempting to set identical bottom==top results
s6in singular transformations; automatically expanding.
sbottom=%s, top=%sR�R
RR�N(R8RRVRR�RNRR%R&R�R�R
R7R\R�R�R�R R�R]R�R�RR�R^R_(	R/R�R�RR�R\t
old_bottomtold_topRb((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pyR�	sF)		
cC s$ddjtj��|jj�S(Ns!return the xaxis scale string: %ss, (R�R�R�R7R(R/((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pyRh-
scK s1|jj||�|jdt�|j�dS(s�
        call signature::

          set_yscale(value)

        Set the scaling of the y-axis: %(scale)s

        ACCEPTS: [%(scale)s]

        Different kwargs are accepted, depending on the scale:
        %(scale_docs)s
        R�N(R7RR�R
R�(R/RcR=((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pyR�2
scC s|jjd|�S(s)Return the y ticks as a list of locationsR(R7Rd(R/R((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pyt
get_yticksD
scC s|jj|d|�S(s�
        Set the y ticks with list of *ticks*

        ACCEPTS: sequence of floats

        Keyword arguments:

          *minor*: [ False | True ]
            Sets the minor ticks if True
        R(R7Rf(R/RgR((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pyt
set_yticksH
scC stjd|jj��S(s0Get the xtick labels as a list of Text instancessText yticklabel(RR�R7Ri(R/((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pytget_ymajorticklabelsU
s	cC stjd|jj��S(s0Get the xtick labels as a list of Text instancessText yticklabel(RR�R7Rk(R/((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pytget_yminorticklabelsZ
s	cC stjd|jjd|��S(s0Get the xtick labels as a list of Text instancessText yticklabelR(RR�R7Rm(R/R((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pytget_yticklabels_
s	cK s|jj||d||�S(s�
        call signature::

          set_yticklabels(labels, fontdict=None, minor=False, **kwargs)

        Set the ytick labels with list of strings *labels*.  Return a list of
        :class:`~matplotlib.text.Text` instances.

        *kwargs* set :class:`~matplotlib.text.Text` properties for the labels.
        Valid properties are
        %(Text)s

        ACCEPTS: sequence of strings
        R(R7Ro(R/RpRqRR=((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pytset_yticklabelsd
scC s|jj|�dS(s�Sets up x-axis ticks and labels that treat the x data as dates.

        *tz* is a timezone string or :class:`tzinfo` instance.
        Defaults to rc value.
        N(R6t	axis_date(R/ttz((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pyt
xaxis_datew
scC s|jj|�dS(s�Sets up y-axis ticks and labels that treat the y data as dates.

        *tz* is a timezone string or :class:`tzinfo` instance.
        Defaults to rc value.
        N(R7R}(R/R~((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pyt
yaxis_date�
scC sHy|j|�SWn0tk
rC|jj�j}||�}|SXdS(s�
        Return *x* string formatted.  This function will use the attribute
        self.fmt_xdata if it is callable, else will fall back on the xaxis
        major formatter
        N(R�RBR6tget_major_formattertformat_data_short(R/RTRHRF((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pytformat_xdata�
s
cC sHy|j|�SWn0tk
rC|jj�j}||�}|SXdS(s�
        Return y string formatted.  This function will use the
        :attr:`fmt_ydata` attribute if it is callable, else will fall
        back on the yaxis major formatter
        N(R�RBR7R�R�(R/RURHRF((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pytformat_ydata�
s
cC sV|dkrd}n|j|�}|dkr9d}n|j|�}d||fS(s4return a format string formatting the *x*, *y* coords???s	x=%s y=%sN(RR�R�(R/RTRUtxstys((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pytformat_coord�
s		cC stS(sA
        Return *True* if this axes support the zoom box
        (R	(R/((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pytcan_zoom�
scC s|jS(sF
        Get whether the axes responds to navigation commands
        (t	_navigate(R/((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pytget_navigate�
scC s
||_dS(sq
        Set whether the axes responds to navigation toolbar commands

        ACCEPTS: [ True | False ]
        N(R�(R/RH((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pyR��
scC s|jS(sR
        Get the navigation toolbar button status: 'PAN', 'ZOOM', or None
        (t_navigate_mode(R/((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pytget_navigate_mode�
scC s
||_dS(s
        Set the navigation toolbar button status;

        .. warning::
            this is not a user-API function.

        N(R�(R/RH((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pyR��
sc
C satjd|jj�d|jj�d|jj�j�d|jj�d|d|�|_dS(s0
        Called when a pan operation has started.

        *x*, *y* are the mouse coordinates in display coords.
        button is the mouse button number:

        * 1: LEFT
        * 2: MIDDLE
        * 3: RIGHT

        .. note::
            Intended to be overridden by new projection types.
        tlimttranst
trans_inverseR�RTRUN(RtBunchR�R�R�R�R�t
_pan_start(R/RTRUtbutton((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pyt	start_pan�
s	cC s
|`dS(s�
        Called when a pan operation completes (when the mouse button
        is up.)

        .. note::
            Intended to be overridden by new projection types.
        N(R�(R/((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pytend_pan�
scC s�d�}|j}||j}||j}|dkrH|dkrHdS|dkr�||||�\}}|jj||�j|j�}	n|dkr�y�|t|jj�}|t|jj	�}||||�\}}|j
�dkrd||}|}ntjd||f�}
tj
|j|jg�}|jj|j�}||
||}
tj|
�j|j�}	Wq�tk
r�tjd	�dSXn|j|	j�|j|	j�dS(
s^
        Called when the mouse moves during a pan operation.

        *button* is the mouse button number:

        * 1: LEFT
        * 2: MIDDLE
        * 3: RIGHT

        *key* is a "shift" key

        *x*, *y* are the mouse coordinates in display coords.

        .. note::
            Intended to be overridden by new projection types.
        cS s|dkr6t|�t|�kr-|}q|}n�|dkrKd}n�|dkr`d}n�|dkrdt|�t|�kr�d}qdt|�t|�kr�d}qt|�t|�kr�|t|�t|�}q|t|�t|�}n||fS(NtcontrolRTiRUtshifti(Rm(REtdxtdy((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pyt
format_deltass"						iNiiR�g�?g$@sOverflow while panning(R�RTRUR�t
translatedttransformedR�RkRnRoRKROtpowertarrayR�R�R�R�t
OverflowErrorR%R&RR�RR�(R/R�RERTRUR�R�R�R�tresulttalphatstartt	oldpointst	newpoints((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pytdrag_pan�
s:		

	

cC s|jS(s�
        return the cursor propertiess as a (*linewidth*, *color*)
        tuple, where *linewidth* is a float and *color* is an RGBA
        tuple
        (t_cursorProps(R/((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pytget_cursor_props9scG swt|�dkr%|d\}}n-t|�dkrF|\}}ntd��tjj|�}||f|_dS(s�
        Set the cursor property as::

          ax.set_cursor_props(linewidth, color)

        or::

          ax.set_cursor_props((linewidth, color))

        ACCEPTS: a (*float*, *color*) tuple
        iiis'args must be a (linewidth, color) tupleN(RhRRRtto_rgbaR�(R/R<tlwR"((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pyR�AscC std��dS(s�
        Register observers to be notified when certain events occur.  Register
        with callback functions with the following signatures.  The function
        has the following signature::

            func(ax)  # where ax is the instance making the callback.

        The following events can be connected to:

          'xlim_changed','ylim_changed'

        The connection id is is returned - you can use this with
        disconnect to disconnect from the axes event

        s3use the callbacks CallbackRegistry instance insteadN(R'(R/RRH((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pyR�VscC std��dS(sdisconnect from the Axes event.s3use the callbacks CallbackRegistry instance insteadN(R'(R/tcid((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pyt
disconnectiscC s�g}|j|j�|j|j�|j|j�|j|j�|j|j�|j|j�|j|j�|j|j	�|j
dk	r�|j|j
�n|j|j�|j|j
�|j|j�|j|jj��|S(sreturn a list of child artistsN(RoR6R7R
R�R'R(R)R*R+R-RR.R4R6R�R(R/tchildren((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pytget_childrenns cC s/t|j�r|j||�S|jj|�S(sSTest whether the mouse event occured in the axes.

        Returns T/F, {}
        (tcallablet	_containsR6R�(R/R�((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pyR��scC s|jj|�S(s�
        Returns True if the point (tuple of x,y) is inside the axes
        (the area defined by the its patch). A pixel coordinate is
        required.

        (R6tcontains_point(R/tpoint((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pyR��scG s<t|�dkr!td��ntjj||d�dS(s�
        call signature::

            pick(mouseevent)

        each child artist will fire a pick event if mouseevent is over
        the artist and the artist has picker set
        isCNew pick API implemented -- see API_CHANGES in the src distributioniN(RhR'R�R�tpick(R/R<((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pyR��s	c sH|dk	r$|j||f��n||f�d�}d����fd�}|j|j|j}t|�r�tt|�}ntt|�r�t	g|D]}|df^q��}	g|D]}
|
|	kr�|
^q�}n|dkr�nt
d��t|�s
dSg|D]}
||
�|
f^q}|j�|ddS(s3
        Return the artist under point that is closest to the *x*, *y*.
        If *trans* is *None*, *x*, and *y* are in window coords,
        (0,0 = lower left).  Otherwise, *trans* is a
        :class:`~matplotlib.transforms.Transform` that specifies the
        coordinate system of *x*, *y*.

        The selection of artists from amongst which the pick function
        finds an artist can be narrowed using the optional keyword
        argument *among*. If provided, this should be either a sequence
        of permitted artists or a function taking an artist as its
        argument and returning a true value if and only if that artist
        can be selected.

        Note this algorithm calculates distance to the vertices of the
        polygon, so if you want to pick a patch, click on the edge!
        cS s9|\}}|\}}tj||d||d�S(s&return the distance between two pointsi(RZtsqrt(tp1tp2RARCtx2ty2((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pytdist_points�scS s3|\}}ttj||d||d��S(s@*x* and *y* are arrays; return the distance to the closest pointi(tminROR�(R�RTRURARC((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pytdist_x_y�sc
 s=t|t�r|j�}|j\}}}}||f|||f||||f|||ff}t|�\}}n�t|t�r�|j�}	|j�j|	�}
t|
�\}}nWt|t	j
�r|jdt�}|j
dt�}|j�j||�\}}n��tj|�tj|��S(Ntorig(R�R3R�R�RitPatchR�R�ttransform_pathRR[t	get_xdataR
t	get_ydatatnumerix_x_yROR�(
R�R�R{RHR|R}tvertstxttyttpathttvertsR�R�(R�txywin(sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pytdist�s:!is"among must be callable or iterableiN(
Rttransform_pointR�R'R(R�tfilterttestR�RPRRhR(R/RTRUR�tamongR�R�R*RqtamongdR�tds((R�R�sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pyt__pick�s(		%(%
cC s
|jj�S(s,
        Get the title text string.
        (R4tget_text(R/((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pyt	get_title�scK suitdd6dd6dd6}|jj|�|jj|�|dk	r^|jj|�n|jj|�|jS(sD
        call signature::

          set_title(label, fontdict=None, **kwargs):

        Set the title for the axes.

        kwargs are Text properties:
        %(Text)s

        ACCEPTS: str

        .. seealso::

            :meth:`text`
                for information on how override and the optional args work
        saxes.titlesizetfontsizeRRR�RN(RR4tset_texttupdateR(R/R�RqR=tdefault((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pyt	set_title�s
cC s|jj�}|j�S(s-
        Get the xlabel text string.
        (R6R�R�(R/R�((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pyt
get_xlabelscK s1|dk	r||j_n|jj|||�S(s�
        call signature::

          set_xlabel(xlabel, fontdict=None, labelpad=None, **kwargs)

        Set the label for the xaxis.

        *labelpad* is the spacing in points between the label and the x-axis

        Valid kwargs are Text properties:
        %(Text)s
        ACCEPTS: str

        .. seealso::

            :meth:`text`
                for information on how override and the optional args work
        N(RR6tlabelpadtset_label_text(R/txlabelRqR�R=((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pyt
set_xlabelscC s|jj�}|j�S(s-
        Get the ylabel text string.
        (R7R�R�(R/R�((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pyt
get_ylabel)scK s1|dk	r||j_n|jj|||�S(s�
        call signature::

          set_ylabel(ylabel, fontdict=None, labelpad=None, **kwargs)

        Set the label for the yaxis

        *labelpad* is the spacing in points between the label and the y-axis

        Valid kwargs are Text properties:
        %(Text)s
        ACCEPTS: str

        .. seealso::

            :meth:`text`
                for information on how override and the optional args work
        N(RR7R�R�(R/tylabelRqR�R=((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pyt
set_ylabel0sc	 s�idd6dd6�jd6}|rEtjd|d|d|�}ntjd|d|d|�}�j|�|j|�|dk	r�|j|�n|j|��jj|��fd	�|_	d
|kr�|j
�j�n|S(s�
        call signature::

          text(x, y, s, fontdict=None, **kwargs)

        Add text in string *s* to axis at location *x*, *y*, data
        coordinates.

        Keyword arguments:

          *fontdict*:
            A dictionary to override the default text properties.
            If *fontdict* is *None*, the defaults are determined by your rc
            parameters.

          *withdash*: [ False | True ]
            Creates a :class:`~matplotlib.text.TextWithDash` instance
            instead of a :class:`~matplotlib.text.Text` instance.

        Individual keyword arguments can be used to override any given
        parameter::

            text(x, y, s, fontsize=12)

        The default transform specifies that text is in data coords,
        alternatively, you can specify text in axis coords (0,0 is
        lower-left and 1,1 is upper-right).  The example below places
        text in the center of the axes::

            text(0.5, 0.5,'matplotlib',
                 horizontalalignment='center',
                 verticalalignment='center',
                 transform = ax.transAxes)

       You can put a rectangular box around the text instance (eg. to
       set a background color) by using the keyword *bbox*.  *bbox* is
       a dictionary of :class:`matplotlib.patches.Rectangle`
       properties.  For example::

         text(x, y, s, bbox=dict(facecolor='red', alpha=0.5))

       Valid kwargs are :class:`matplotlib.text.Text` properties:

       %(Text)s
        RRR�RR�RTRURc s�jj|�S(N(R(R�(R}(R/(sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pyR��stclip_onN(R�R2tTextWithDashR3RR�RR(RoR�R5R�(	R/RTRURRqtwithdashR=R�R+((R/sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pyRGs&0
			


c sztj||�}|jtj���j|�|jd�rT|j�j�n�j	j
|��fd�|_|S(s
        call signature::

          annotate(s, xy, xytext=None, xycoords='data',
                   textcoords='data', arrowprops=None, **kwargs)

        Keyword arguments:

        %(Annotation)s

        .. plot:: mpl_examples/pylab_examples/annotation_demo2.py
        R�c s�jj|�S(N(R(R�(R}(R/(sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pyR��s(R2t
AnnotationR�R�R�Rthas_keyR<R6R(RoR�(R/R<R=R�((R/sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pytannotate�s
iicK s�d|krtdd��n|j�\}}|jd|d|�|j|�}||kpk||k}tj|j|j�}	tj	||g||gd|	|�}
t
|
_|j|
�|j
dt
d|�|
S(sA
        call signature::

          axhline(y=0, xmin=0, xmax=1, **kwargs)

        Axis Horizontal Line

        Draw a horizontal line at *y* from *xmin* to *xmax*.  With the
        default values of *xmin* = 0 and *xmax* = 1, this line will
        always span the horizontal extent of the axes, regardless of
        the xlim settings, even if you change them, eg. with the
        :meth:`set_xlim` command.  That is, the horizontal extent is
        in axes coords: 0=left, 0.5=middle, 1.0=right but the *y*
        location is in data coordinates.

        Return value is the :class:`~matplotlib.lines.Line2D`
        instance.  kwargs are the same as kwargs to plot, and can be
        used to control the line properties.  Eg.,

        * draw a thick red hline at *y* = 0 that spans the xrange

            >>> axhline(linewidth=4, color='r')

        * draw a default hline at *y* = 1 that spans the xrange

            >>> axhline(y=1)

        * draw a default hline at *y* = .5 that spans the the middle half of
          the xrange

            >>> axhline(y=.5, xmin=0.25, xmax=0.75)

        Valid kwargs are :class:`~matplotlib.lines.Line2D` properties,
        with the exception of 'transform':

        %(Line2D)s

        .. seealso::

            :meth:`axhspan`
                for example plot and source code
        R�s&'transform' is not allowed as a kwarg;s$axhline generates its own transform.R�R=R�R�(RRYR�RNR�R�R�R�RR[R
R�R�R�(R/RUR\R]R=R^R_tyyR�R�R{((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pytaxhline�s-
'	
cK s�d|krtdd��n|j�\}}|jd|d|�|j|�}||kpk||k}tj|j|j�}	tj	||g||gd|	|�}
t
|
_|j|
�|j
d|dt
�|
S(s9
        call signature::

          axvline(x=0, ymin=0, ymax=1, **kwargs)

        Axis Vertical Line

        Draw a vertical line at *x* from *ymin* to *ymax*.  With the
        default values of *ymin* = 0 and *ymax* = 1, this line will
        always span the vertical extent of the axes, regardless of the
        ylim settings, even if you change them, eg. with the
        :meth:`set_ylim` command.  That is, the vertical extent is in
        axes coords: 0=bottom, 0.5=middle, 1.0=top but the *x* location
        is in data coordinates.

        Return value is the :class:`~matplotlib.lines.Line2D`
        instance.  kwargs are the same as kwargs to plot, and can be
        used to control the line properties.  Eg.,

        * draw a thick red vline at *x* = 0 that spans the yrange

            >>> axvline(linewidth=4, color='r')

        * draw a default vline at *x* = 1 that spans the yrange

            >>> axvline(x=1)

        * draw a default vline at *x* = .5 that spans the the middle half of
          the yrange

            >>> axvline(x=.5, ymin=0.25, ymax=0.75)

        Valid kwargs are :class:`~matplotlib.lines.Line2D` properties,
        with the exception of 'transform':

        %(Line2D)s

        .. seealso::

            :meth:`axhspan`
                for example plot and source code
        R�s&'transform' is not allowed as a kwarg;s$axvline generates its own transform.R�R=R�R�(RRXR�RMR�R�R�R�RR[R
R�R�R�(R/RTR^R_R=R\R]txxR�R�R{((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pytaxvline�s-
'	
c	K s�tj|j|j�}|j||g||gd|�|j||g�\}}|j||g�\}}||f||f||f||ff}tj||�}|j	|�t
|_|j|�|j
dt
�|S(sF
        call signature::

          axhspan(ymin, ymax, xmin=0, xmax=1, **kwargs)

        Axis Horizontal Span.

        *y* coords are in data units and *x* coords are in axes (relative
        0-1) units.

        Draw a horizontal span (rectangle) from *ymin* to *ymax*.
        With the default values of *xmin* = 0 and *xmax* = 1, this
        always spans the xrange, regardless of the xlim settings, even
        if you change them, eg. with the :meth:`set_xlim` command.
        That is, the horizontal extent is in axes coords: 0=left,
        0.5=middle, 1.0=right but the *y* location is in data
        coordinates.

        Return value is a :class:`matplotlib.patches.Polygon`
        instance.

        Examples:

        * draw a gray rectangle from *y* = 0.25-0.75 that spans the
          horizontal extent of the axes

            >>> axhspan(0.25, 0.75, facecolor='0.5', alpha=0.5)

        Valid kwargs are :class:`~matplotlib.patches.Polygon` properties:

        %(Polygon)s

        **Example:**

        .. plot:: mpl_examples/pylab_examples/axhspan_demo.py

        R=R�(R�R�R�R�R�RMRNRcRdR�R
R�R�R�(	R/R^R_R\R]R=R�R�R�((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pytaxhspan2
s'"*
	
c	K s�tj|j|j�}|j||g||gd|�|j||g�\}}|j||g�\}}||f||f||f||fg}tj||�}|j	|�t
|_|j|�|j
dt
�|S(sZ
        call signature::

          axvspan(xmin, xmax, ymin=0, ymax=1, **kwargs)

        Axis Vertical Span.

        *x* coords are in data units and *y* coords are in axes (relative
        0-1) units.

        Draw a vertical span (rectangle) from *xmin* to *xmax*.  With
        the default values of *ymin* = 0 and *ymax* = 1, this always
        spans the yrange, regardless of the ylim settings, even if you
        change them, eg. with the :meth:`set_ylim` command.  That is,
        the vertical extent is in axes coords: 0=bottom, 0.5=middle,
        1.0=top but the *y* location is in data coordinates.

        Return value is the :class:`matplotlib.patches.Polygon`
        instance.

        Examples:

        * draw a vertical green translucent rectangle from x=1.25 to 1.55 that
          spans the yrange of the axes

            >>> axvspan(1.25, 1.55, facecolor='g', alpha=0.5)

        Valid kwargs are :class:`~matplotlib.patches.Polygon`
        properties:

        %(Polygon)s

        .. seealso::

            :meth:`axhspan`
                for example plot and source code
        R=R�(R�R�R�R�R�RMRNRcRdR�R
R�R�R�(	R/R\R]R^R_R=R�R�R�((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pytaxvspank
s'"*
	
RqtsolidcK sz|jd�d
k	r$td��n|j||g|d|�|j|�}|j|�}|j|�}t|�s�|g}nt|�s�|g}nt|�s�|g}ntj|�}tj|�}tj|�}t	|�dkrtj
||j�}nt	|�dkr6tj
||j�}nt	|�t	|�krZtd�nt	|�t	|�kr~td�ngt
|||�D]'\}}	}
||
f|	|
ff^q�}tj|d|d|d	|�}|j|�|j|�t|j�|j��}
t|j�|j��}|j�}|j�}|
|f||ff}|j|�|j�|S(s�
        call signature::

          hlines(y, xmin, xmax, colors='k', linestyles='solid', **kwargs)

        Plot horizontal lines at each *y* from *xmin* to *xmax*.

        Returns the :class:`~matplotlib.collections.LineCollection`
        that was added.

        Required arguments:

          *y*:
            a 1-D numpy array or iterable.

          *xmin* and *xmax*:
            can be scalars or ``len(x)`` numpy arrays.  If they are
            scalars, then the respective values are constant, else the
            widths of the lines are determined by *xmin* and *xmax*.

        Optional keyword arguments:

          *colors*:
            a line collections color argument, either a single color
            or a ``len(y)`` list of colors

          *linestyles*:
            [ 'solid' | 'dashed' | 'dashdot' | 'dotted' ]

        **Example:**

        .. plot:: mpl_examples/pylab_examples/hline_demo.py
        Rs^hlines now uses a collections.LineCollection and not a list of Line2D to draw; see API_CHANGESR=is&xmin and y are unequal sized sequencess&xmax and y are unequal sized sequencesRt
linestylesR�N(RlRR'R�RNRMR�ROR�RhtresizeRQRRitmcolltLineCollectionR�R�R�RnR�R�(R/RUR\R]RR�R�R=tthisxmintthisxmaxtthisyR�tcolltminxtmaxxtminytmaxytcorners((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pythlines�
sJ$=



cK s�|jd�dk	r$td��n|jd|d||gd|�|j|�}|j|�}|j|�}t|�s�|g}nt|�s�|g}nt|�s�|g}ntj|�}tj|�}tj|�}t	|�dkrtj
||j�}nt	|�dkr<tj
||j�}nt	|�t	|�kr`td�nt	|�t	|�kr�td�ntj
||g�j}gt||�D]*\}	\}
}|	|
f|	|ff^q�}tj|d	|d
|d|�}
|j|
�|
j|�t|�}t|�}tt|�t|��}tt|�t|��}||f||ff}|j|�|j�|
S(
s

        call signature::

          vlines(x, ymin, ymax, color='k', linestyles='solid')

        Plot vertical lines at each *x* from *ymin* to *ymax*.  *ymin*
        or *ymax* can be scalars or len(*x*) numpy arrays.  If they are
        scalars, then the respective values are constant, else the
        heights of the lines are determined by *ymin* and *ymax*.

        *colors*
          a line collections color args, either a single color
          or a len(*x*) list of colors

        *linestyles*

          one of [ 'solid' | 'dashed' | 'dashdot' | 'dotted' ]

        Returns the :class:`matplotlib.collections.LineCollection`
        that was added.

        kwargs are :class:`~matplotlib.collections.LineCollection` properties:

        %(LineCollection)s
        Rs^vlines now uses a collections.LineCollection and not a list of Line2D to draw; see API_CHANGESR�R�R=is&ymin and x are unequal sized sequencess&ymax and x are unequal sized sequencesRR�R�N(RlRR'R�RMRNR�ROR�RhR�RQRR�tTRiR�R�R�R�R�RnR�R�(R/RTR^R_RR�R�R=tYtthisxtthisymintthisymaxR�R�R�R�R�R�R�((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pytvlines�
sL"=



cO s�|jdt�}|jdt�}|js:|j�ng}x4|j||�D] }|j|�|j|�qSW|jd|d|�|S(s
        Plot lines and/or markers to the
        :class:`~matplotlib.axes.Axes`.  *args* is a variable length
        argument, allowing for multiple *x*, *y* pairs with an
        optional format string.  For example, each of the following is
        legal::

            plot(x, y)         # plot x and y using default line style and color
            plot(x, y, 'bo')   # plot x and y using blue circle markers
            plot(y)            # plot y using x as index array 0..N-1
            plot(y, 'r+')      # ditto, but with red plusses

        If *x* and/or *y* is 2-dimensional, then the corresponding columns
        will be plotted.

        An arbitrary number of *x*, *y*, *fmt* groups can be
        specified, as in::

            a.plot(x1, y1, 'g^', x2, y2, 'g-')

        Return value is a list of lines that were added.

        The following format string characters are accepted to control
        the line style or marker:

        ================    ===============================
        character           description
        ================    ===============================
        ``'-'``             solid line style
        ``'--'``            dashed line style
        ``'-.'``            dash-dot line style
        ``':'``             dotted line style
        ``'.'``             point marker
        ``','``             pixel marker
        ``'o'``             circle marker
        ``'v'``             triangle_down marker
        ``'^'``             triangle_up marker
        ``'<'``             triangle_left marker
        ``'>'``             triangle_right marker
        ``'1'``             tri_down marker
        ``'2'``             tri_up marker
        ``'3'``             tri_left marker
        ``'4'``             tri_right marker
        ``'s'``             square marker
        ``'p'``             pentagon marker
        ``'*'``             star marker
        ``'h'``             hexagon1 marker
        ``'H'``             hexagon2 marker
        ``'+'``             plus marker
        ``'x'``             x marker
        ``'D'``             diamond marker
        ``'d'``             thin_diamond marker
        ``'|'``             vline marker
        ``'_'``             hline marker
        ================    ===============================


        The following color abbreviations are supported:

        ==========  ========
        character   color
        ==========  ========
        'b'         blue
        'g'         green
        'r'         red
        'c'         cyan
        'm'         magenta
        'y'         yellow
        'k'         black
        'w'         white
        ==========  ========

        In addition, you can specify colors in many weird and
        wonderful ways, including full names (``'green'``), hex
        strings (``'#008000'``), RGB or RGBA tuples (``(0,1,0,1)``) or
        grayscale intensities as a string (``'0.8'``).  Of these, the
        string specifications can be used in place of a ``fmt`` group,
        but the tuple forms can be used only as ``kwargs``.

        Line styles and colors are combined in a single format string, as in
        ``'bo'`` for blue circles.

        The *kwargs* can be used to set line properties (any property that has
        a ``set_*`` method).  You can use this to set a line label (for auto
        legends), linewidth, anitialising, marker face color, etc.  Here is an
        example::

            plot([1,2,3], [1,2,3], 'go-', label='line 1', linewidth=2)
            plot([1,2,3], [1,4,9], 'rs',  label='line 2')
            axis([0, 4, 0, 10])
            legend()

        If you make multiple lines with one plot command, the kwargs
        apply to all those lines, e.g.::

            plot(x1, y1, x2, y2, antialised=False)

        Neither line will be antialiased.

        You do not need to use format strings, which are just
        abbreviations.  All of the line properties can be controlled
        by keyword arguments.  For example, you can set the color,
        marker, linestyle, and markercolor with::

            plot(x, y, color='green', linestyle='dashed', marker='o',
                 markerfacecolor='blue', markersize=12).  See
                 :class:`~matplotlib.lines.Line2D` for details.

        The kwargs are :class:`~matplotlib.lines.Line2D` properties:

        %(Line2D)s

        kwargs *scalex* and *scaley*, if defined, are passed on to
        :meth:`~matplotlib.axes.Axes.autoscale_view` to determine
        whether the *x* and *y* axes are autoscaled; the default is
        *True*.
        R�R�(R8R	R�R�R$R�RoR�(R/R<R=R�R�R�RD((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pyR+Lsw	

tboc	K sh|js|j�n|j||||�}|rD|j|�n|rZ|j|�n|j�|S(sb
        call signature::

          plot_date(x, y, fmt='bo', tz=None, xdate=True, ydate=False, **kwargs)

        Similar to the :func:`~matplotlib.pyplot.plot` command, except
        the *x* or *y* (or both) data is considered to be dates, and the
        axis is labeled accordingly.

        *x* and/or *y* can be a sequence of dates represented as float
        days since 0001-01-01 UTC.

        Keyword arguments:

          *fmt*: string
            The plot format string.

          *tz*: [ None | timezone string | :class:`tzinfo` instance]
            The time zone to use in labeling dates. If *None*, defaults to rc
            value.

          *xdate*: [ True | False ]
            If *True*, the *x*-axis will be labeled with dates.

          *ydate*: [ False | True ]
            If *True*, the *y*-axis will be labeled with dates.

        Note if you are using custom date tickers and formatters, it
        may be necessary to set the formatters/locators after the call
        to :meth:`plot_date` since :meth:`plot_date` will set the
        default tick locator to
        :class:`matplotlib.dates.AutoDateLocator` (if the tick
        locator is not already set to a
        :class:`matplotlib.dates.DateLocator` instance) and the
        default tick formatter to
        :class:`matplotlib.dates.AutoDateFormatter` (if the tick
        formatter is not already set to a
        :class:`matplotlib.dates.DateFormatter` instance).

        Valid kwargs are :class:`~matplotlib.lines.Line2D` properties:

        %(Line2D)s

        .. seealso::

            :mod:`~matplotlib.dates`
                for helper functions

            :func:`~matplotlib.dates.date2num`,
            :func:`~matplotlib.dates.num2date` and
            :func:`~matplotlib.dates.drange`
                for help on creating the required floating point
                dates.
        (R�R�R+RR�R�(	R/RTRURR~txdatetydateR=R>((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pyt	plot_date�s:	

cO s�|js|j�ni|jdd�d6|jdd
�d6|jdd�d6}i|jdd�d6|jdd
�d6|jdd�d6}|jd	|�|jd	|�|j}t|_|j||�}||_|S(s�
        call signature::

          loglog(*args, **kwargs)

        Make a plot with log scaling on the *x* and *y* axis.

        :func:`~matplotlib.pyplot.loglog` supports all the keyword
        arguments of :func:`~matplotlib.pyplot.plot` and
        :meth:`matplotlib.axes.Axes.set_xscale` /
        :meth:`matplotlib.axes.Axes.set_yscale`.

        Notable keyword arguments:

          *basex*/*basey*: scalar > 1
            base of the *x*/*y* logarithm

          *subsx*/*subsy*: [ None | sequence ]
            the location of the minor *x*/*y* ticks; *None* defaults
            to autosubs, which depend on the number of decades in the
            plot; see :meth:`matplotlib.axes.Axes.set_xscale` /
            :meth:`matplotlib.axes.Axes.set_yscale` for details

          *nonposx*/*nonposy*: ['mask' | 'clip' ]
            non-positive values in *x* or *y* can be masked as
            invalid, or clipped to a very small positive number

        The remaining valid kwargs are
        :class:`~matplotlib.lines.Line2D` properties:

        %(Line2D)s

        **Example:**

        .. plot:: mpl_examples/pylab_examples/log_demo.py

        tbasexi
tsubsxtnonposxtmasktbaseytsubsytnonposyRfN(R�R�R8RR�R�R	R+(R/R<R=R�R�RHR{((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pytloglogs'	
			cO s�|js|j�ni|jdd�d6|jdd�d6|jdd�d6}|jd|�|jd�|j}t|_|j||�}||_|S(	s�
        call signature::

          semilogx(*args, **kwargs)

        Make a plot with log scaling on the *x* axis.

        :func:`semilogx` supports all the keyword arguments of
        :func:`~matplotlib.pyplot.plot` and
        :meth:`matplotlib.axes.Axes.set_xscale`.

        Notable keyword arguments:

          *basex*: scalar > 1
            base of the *x* logarithm

          *subsx*: [ None | sequence ]
            The location of the minor xticks; *None* defaults to
            autosubs, which depend on the number of decades in the
            plot; see :meth:`~matplotlib.axes.Axes.set_xscale` for
            details.

          *nonposx*: ['mask' | 'clip' ]
            non-positive values in *x* can be masked as
            invalid, or clipped to a very small positive number

        The remaining valid kwargs are
        :class:`~matplotlib.lines.Line2D` properties:

        %(Line2D)s

        .. seealso::

            :meth:`loglog`
                For example code and figure
        Ri
RRRRfRN(R�R�R8RR�R�R	R+(R/R<R=tdRHR{((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pytsemilogxUs&	

			cO s�|js|j�ni|jdd�d6|jdd�d6|jdd�d6}|jd|�|jd�|j}t|_|j||�}||_|S(	s�
        call signature::

          semilogy(*args, **kwargs)

        Make a plot with log scaling on the *y* axis.

        :func:`semilogy` supports all the keyword arguments of
        :func:`~matplotlib.pylab.plot` and
        :meth:`matplotlib.axes.Axes.set_yscale`.

        Notable keyword arguments:

          *basey*: scalar > 1
            Base of the *y* logarithm

          *subsy*: [ None | sequence ]
            The location of the minor yticks; *None* defaults to
            autosubs, which depend on the number of decades in the
            plot; see :meth:`~matplotlib.axes.Axes.set_yscale` for
            details.

          *nonposy*: ['mask' | 'clip' ]
            non-positive values in *y* can be masked as
            invalid, or clipped to a very small positive number

        The remaining valid kwargs are
        :class:`~matplotlib.lines.Line2D` properties:

        %(Line2D)s

        .. seealso::

            :meth:`loglog`
                For example code and figure
        Ri
RRRRfRN(R�R�R8RR�R�R	R+(R/R<R=R
RHR{((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pytsemilogy�s&	

			cK s|j|||�S(s�
        call signature::

            acorr(x, normed=True, detrend=mlab.detrend_none, usevlines=True,
                  maxlags=10, **kwargs)

        Plot the autocorrelation of *x*.  If *normed* = *True*,
        normalize the data by the autocorrelation at 0-th lag.  *x* is
        detrended by the *detrend* callable (default no normalization).

        Data are plotted as ``plot(lags, c, **kwargs)``

        Return value is a tuple (*lags*, *c*, *line*) where:

          - *lags* are a length 2*maxlags+1 lag vector

          - *c* is the 2*maxlags+1 auto correlation vector

          - *line* is a :class:`~matplotlib.lines.Line2D` instance
            returned by :meth:`plot`

        The default *linestyle* is None and the default *marker* is
        ``'o'``, though these can be overridden with keyword args.
        The cross correlation is performed with
        :func:`numpy.correlate` with *mode* = 2.

        If *usevlines* is *True*, :meth:`~matplotlib.axes.Axes.vlines`
        rather than :meth:`~matplotlib.axes.Axes.plot` is used to draw
        vertical lines from the origin to the acorr.  Otherwise, the
        plot style is determined by the kwargs, which are
        :class:`~matplotlib.lines.Line2D` properties.

        *maxlags* is a positive integer detailing the number of lags
        to show.  The default value of *None* will return all
        :math:`2 	imes \mathrm{len}(x) - 1` lags.

        The return value is a tuple (*lags*, *c*, *linecol*, *b*)
        where

          - *linecol* is the
            :class:`~matplotlib.collections.LineCollection`

          - *b* is the *x*-axis.

        .. seealso::

            :meth:`~matplotlib.axes.Axes.plot` or
            :meth:`~matplotlib.axes.Axes.vlines`
               For documentation on valid kwargs.

        **Example:**

        :func:`~matplotlib.pyplot.xcorr` above, and
        :func:`~matplotlib.pyplot.acorr` below.

        **Example:**

        .. plot:: mpl_examples/pylab_examples/xcorr_demo.py
        (txcorr(R/RTR=((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pytacorr�s=i
c
K s�t|�}|t|�kr-td��n|tj|��}|tj|��}tj||dd�}	|r�|	tjtj||�tj||��}	n|dkr�|d}n||ks�|dkr�td|��ntj||d�}
|	|d|||!}	|rN|j	|
dg|	|�}|j
|�}n>|jdd�|jd	d
�|j|
|	|�\}d}|
|	||fS(s�
        call signature::

            def xcorr(self, x, y, normed=True, detrend=mlab.detrend_none,
              usevlines=True, maxlags=10, **kwargs):

        Plot the cross correlation between *x* and *y*.  If *normed* =
        *True*, normalize the data by the cross correlation at 0-th
        lag.  *x* and y are detrended by the *detrend* callable
        (default no normalization).  *x* and *y* must be equal length.

        Data are plotted as ``plot(lags, c, **kwargs)``

        Return value is a tuple (*lags*, *c*, *line*) where:

          - *lags* are a length ``2*maxlags+1`` lag vector

          - *c* is the ``2*maxlags+1`` auto correlation vector

          - *line* is a :class:`~matplotlib.lines.Line2D` instance
             returned by :func:`~matplotlib.pyplot.plot`.

        The default *linestyle* is *None* and the default *marker* is
        'o', though these can be overridden with keyword args.  The
        cross correlation is performed with :func:`numpy.correlate`
        with *mode* = 2.

        If *usevlines* is *True*:

           :func:`~matplotlib.pyplot.vlines`
           rather than :func:`~matplotlib.pyplot.plot` is used to draw
           vertical lines from the origin to the xcorr.  Otherwise the
           plotstyle is determined by the kwargs, which are
           :class:`~matplotlib.lines.Line2D` properties.

           The return value is a tuple (*lags*, *c*, *linecol*, *b*)
           where *linecol* is the
           :class:`matplotlib.collections.LineCollection` instance and
           *b* is the *x*-axis.

        *maxlags* is a positive integer detailing the number of lags to show.
        The default value of *None* will return all ``(2*len(x)-1)`` lags.

        **Example:**

        :func:`~matplotlib.pyplot.xcorr` above, and
        :func:`~matplotlib.pyplot.acorr` below.

        **Example:**

        .. plot:: mpl_examples/pylab_examples/xcorr_demo.py
        sx and y must be equal lengthtmodeiis.maglags must be None or strictly positive < %diRtoRRN(
RhRROR�t	correlateR�tdotRRjR�R�t
setdefaultR+(
R/RTRUtnormedtdetrendt	usevlinestmaxlagsR=tNxR"tlagsR�RH((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pyR
�s.82

cC s�|j}|j|j�|jg|jD]}t|tj�r*|^q*�|jg|jD]}t|tj�r_|^q_�|jg|jD]}t|tj�r�|^q��|S(s6return artists that will be used as handles for legend(	R�R
R'R.R�R�R�tRegularPolyCollectiontCircleCollection(R/thandlesR"((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pyt_get_legend_handlesUs
cC s~g}g}xe|j�D]W}|j�}|dk	r|dkr|jd�r|j|�|j|�qqW||fS(s�
        return handles and labels for legend

        ax.legend() is equivalent to ::

          h, l = ax.get_legend_handles_labels()
          ax.legend(h, l)

        Rt_N(RR�Rt
startswithRo(R/RRpthandleR�((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pytget_legend_handles_labelsbs
cO s�t|�dkrJ|j�\}}t|�dkr\tjd�dSnt|�dkr�|d}gt|j�|�D]\}}|^q|}n�t|�dkr"t|d�s�t|dt	�r|\}}gt|j�|�D]\}}|^q�}||d<q\|\}}n:t|�dkrP|\}}}||d<nt
d��tj|�}t
j||||�|_|jS(	s
        call signature::

          legend(*args, **kwargs)

        Place a legend on the current axes at location *loc*.  Labels are a
        sequence of strings and *loc* can be a string or an integer specifying
        the legend location.

        To make a legend with existing lines::

          legend()

        :meth:`legend` by itself will try and build a legend using the label
        property of the lines/patches/collections.  You can set the label of
        a line by doing::

          plot(x, y, label='my data')

        or::

          line.set_label('my data').

        If label is set to '_nolegend_', the item will not be shown in
        legend.

        To automatically generate the legend from labels::

          legend( ('label1', 'label2', 'label3') )

        To make a legend for a list of lines and labels::

          legend( (line1, line2, line3), ('label1', 'label2', 'label3') )

        To make a legend at a given location, using a location argument::

          legend( ('label1', 'label2', 'label3'), loc='upper left')

        or::

          legend( (line1, line2, line3),  ('label1', 'label2', 'label3'), loc=2)

        The location codes are

          ===============   =============
          Location String   Location Code
          ===============   =============
          'best'            0
          'upper right'     1
          'upper left'      2
          'lower left'      3
          'lower right'     4
          'right'           5
          'center left'     6
          'center right'    7
          'lower center'    8
          'upper center'    9
          'center'          10
          ===============   =============


        Users can specify any arbitrary location for the legend using the
        *bbox_to_anchor* keyword argument. bbox_to_anchor can be an instance
        of BboxBase(or its derivatives) or a tuple of 2 or 4 floats.
        For example,

          loc = 'upper right', bbox_to_anchor = (0.5, 0.5)

        will place the legend so that the upper right corner of the legend at
        the center of the axes.

        The legend location can be specified in other coordinate, by using the
        *bbox_transform* keyword.

        The loc itslef can be a 2-tuple giving x,y of the lower-left corner of
        the legend in axes coords (*bbox_to_anchor* is ignored).


        Keyword arguments:

          *prop*: [ None | FontProperties | dict ]
            A :class:`matplotlib.font_manager.FontProperties`
            instance. If *prop* is a dictionary, a new instance will be
            created with *prop*. If *None*, use rc settings.

          *numpoints*: integer
            The number of points in the legend for line

          *scatterpoints*: integer
            The number of points in the legend for scatter plot

          *scatteroffsets*: list of floats
            a list of yoffsets for scatter symbols in legend

          *markerscale*: [ None | scalar ]
            The relative size of legend markers vs. original. If *None*, use rc
            settings.

          *frameon*: [ True | False ]
            if True, draw a frame.  Default is True

          *fancybox*: [ None | False | True ]
            if True, draw a frame with a round fancybox.  If None, use rc

          *shadow*: [ None | False | True ]
            If *True*, draw a shadow behind legend. If *None*, use rc settings.

          *ncol* : integer
            number of columns. default is 1

          *mode* : [ "expand" | None ]
            if mode is "expand", the legend will be horizontally expanded
            to fill the axes area (or *bbox_to_anchor*)

          *bbox_to_anchor* : an instance of BboxBase or a tuple of 2 or 4 floats
            the bbox that the legend will be anchored.

          *bbox_transform* : [ an instance of Transform | None ]
            the transform for the bbox. transAxes if None.

          *title* : string
            the legend title

        Padding and spacing between various elements use following
        keywords parameters. These values are measure in font-size
        units. E.g., a fontsize of 10 points and a handlelength=5
        implies a handlelength of 50 points.  Values from rcParams
        will be used if None.

        ================   ==================================================================
        Keyword            Description
        ================   ==================================================================
        borderpad          the fractional whitespace inside the legend border
        labelspacing       the vertical space between the legend entries
        handlelength       the length of the legend handles
        handletextpad      the pad between the legend handle and text
        borderaxespad      the pad between the axes and legend border
        columnspacing      the spacing between columns
        ================   ==================================================================


        **Example:**

        .. plot:: mpl_examples/api/legend_demo.py

        Also see :ref:`plotting-guide-legend`.

        isDNo labeled objects found. Use label='...' kwarg on individual plots.iitlocisInvalid arguments to legendN(RhR!R%R&RRiRRR�RRBRtflattentmlegendtLegendR-(R/R<R=RRpR}R�R"((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pytlegendys.�

"#

cO sQ|jdd�}|dkr-td��nd||d<|j||||�S(	sc
        call signature::

          step(x, y, *args, **kwargs)

        Make a step plot. Additional keyword args to :func:`step` are the same
        as those for :func:`~matplotlib.pyplot.plot`.

        *x* and *y* must be 1-D sequences, and it is assumed, but not checked,
        that *x* is uniformly increasing.

        Keyword arguments:

        *where*: [ 'pre' | 'post' | 'mid'  ]
          If 'pre', the interval from x[i] to x[i+1] has level y[i+1]

          If 'post', that interval has level y[i]

          If 'mid', the jumps in *y* occur half-way between the
          *x*-values.
        twheretpretposttmids7'where' argument to step must be 'pre', 'post' or 'mid'ssteps-R(R(R)R*(R8RR+(R/RTRUR<R=R'((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pytstep5s
g�������?c*K s�|js|j�n|jdd&�}|jdd&�}|jdd&�}|jdd&�}	|jdd&�}
|jdt��}|jdd&�}|jdd	�}
|jd|�|jd|
�|jd
d�}|jdd
�}|jdt�}|jdd�}d�}|}||�}||�}||�}|}||�}||�}t}t}|d
kr5|jd|d|d|�|r�|jd�n|d&kr�|j	�dkr�dg}t
}q�dg}nt|�}t|�dkr||9}nt|�dkr	||9}q	n�|dkr�|jd|d|d|�|rs|jd�n|d&kr�|j
�dkr�dg}t
}q�dg}nt|�}t|�dkr�||9}nt|�dkr	||9}q	n
td|�t|�|kr(||9}n|d&krDd&g|}nattjj|��}t|�dkr�ddddgg}nt|�|kr�||9}n|d&kr�d&g|}nattjj|��}t|�dkrddddgg}nt|�|kr"||9}ng}|jd&k	rv|j|�}|j|�}|	d&k	rv|j|	�}	qvn|jd&k	r�|j|�}|j|�}|
d&k	r�|j|
�}
q�n|dkr�n�|dkrj|d
kr#gtt|��D]}||||d^q�}qw|dkrwgtt|��D]}||||d^qB}qwn
td|�t|||||||�}x�|D]�\}}}}}} }!|dkr�||7}t|�}n|dkr||7}t|�}ntjd||fd|d|d |d| d|!d|�}"d!}|"j|�d"|"j�_|j|"�|j |"�q�W|j}#|j!t
�|	d&k	s�|
d&k	r�|d
krgt||�D]\}}|d#|^q�}$gt||�D]\}}||^q�}%nk|dkr�gt||�D]\}}||^q2}$gt||�D]\}}|d#|^q^}%n|j"|$|%d|
d|	d$d&|�n|j!|#�|rF|j#j$\}&}'t%j&g|D]}|dkr�|^q��}&|	d&k	r|&t%j'|	�}&nt(|&d%d�}&|&|'f|j#_$n|r�|j#j)\}(})t%j&g|D]}|dkrk|^qk�}(|
d&k	r�|(t%j'|
�}(nt(|(d%d�}(|(|)f|j#_)n|j*�|S('s�

        call signature::

          bar(left, height, width=0.8, bottom=0, **kwargs)

        Make a bar plot with rectangles bounded by:

          *left*, *left* + *width*, *bottom*, *bottom* + *height*
                (left, right, bottom and top edges)

        *left*, *height*, *width*, and *bottom* can be either scalars
        or sequences

        Return value is a list of
        :class:`matplotlib.patches.Rectangle` instances.

        Required arguments:

          ========   ===============================================
          Argument   Description
          ========   ===============================================
          *left*     the x coordinates of the left sides of the bars
          *height*   the heights of the bars
          ========   ===============================================

        Optional keyword arguments:

          ===============   ==========================================
          Keyword           Description
          ===============   ==========================================
          *width*           the widths of the bars
          *bottom*          the y coordinates of the bottom edges of
                            the bars
          *color*           the colors of the bars
          *edgecolor*       the colors of the bar edges
          *linewidth*       width of bar edges; None means use default
                            linewidth; 0 means don't draw edges.
          *xerr*            if not None, will be used to generate
                            errorbars on the bar chart
          *yerr*            if not None, will be used to generate
                            errorbars on the bar chart
          *ecolor*          specifies the color of any errorbar
          *capsize*         (default 3) determines the length in
                            points of the error bar caps
          *error_kw*        dictionary of kwargs to be passed to
                            errorbar method. *ecolor* and *capsize*
                            may be specified here rather than as
                            independent kwargs.
          *align*           'edge' (default) | 'center'
          *orientation*     'vertical' | 'horizontal'
          *log*             [False|True] False (default) leaves the
                            orientation axis as-is; True sets it to
                            log scale
          ===============   ==========================================

        For vertical bars, *align* = 'edge' aligns bars by their left
        edges in left, while *align* = 'center' interprets these
        values as the *x* coordinates of the bar centers. For
        horizontal bars, *align* = 'edge' aligns bars by their bottom
        edges in bottom, while *align* = 'center' interprets these
        values as the *y* coordinates of the bar centers.

        The optional arguments *color*, *edgecolor*, *linewidth*,
        *xerr*, and *yerr* can be either scalars or sequences of
        length equal to the number of bars.  This enables you to use
        bar as the basis for stacked bar charts, or candlestick plots.
        Detail: *xerr* and *yerr* are passed directly to
        :meth:`errorbar`, so they can also have shape 2xN for
        independent specification of lower and upper errors.

        Other optional kwargs:

        %(Rectangle)s

        **Example:** A stacked bar chart.

        .. plot:: mpl_examples/pylab_examples/bar_stacked.py
        R t	edgecolort	linewidthtxerrtyerrterror_kwtecolortcapsizeitaligntedgetorientationtverticalRfR�RcS st|�s|gS|SdS(N(R�(RT((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pyt
make_iterable�sR�R�R=g0��.�++iit
horizontalsinvalid orientation: %sR�g@sinvalid alignment: %stxyRnRoR_t
_nolegend_idg�?Rg�������?N(+R�R�R8RRPRR
R�R�RhR	RhR�RgRtlistRRt
to_rgba_arrayR6RMR7RNRmRiRmRcRR�R�t_interpolation_stepsR�RoRIterrorbarR�R�ROtamintamaxRnR�R�(*R/R�RoRnR�R=R R,R-R.R/R0R1R2R3R5RfR�R7t_leftt_bottomtadjust_ylimtadjust_xlimtnbarsR'tiR<R{RHR|R}R"teR�R*t	holdstateRTRUR\R]R^R_((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pytbarUsP	
			
		




8;
"

		

	
0/,3	

..
cK s1|jd|d|d|d|dd|�}|S(s�

        call signature::

          barh(bottom, width, height=0.8, left=0, **kwargs)

        Make a horizontal bar plot with rectangles bounded by:

          *left*, *left* + *width*, *bottom*, *bottom* + *height*
                (left, right, bottom and top edges)

        *bottom*, *width*, *height*, and *left* can be either scalars
        or sequences

        Return value is a list of
        :class:`matplotlib.patches.Rectangle` instances.

        Required arguments:

          ========   ======================================================
          Argument   Description
          ========   ======================================================
          *bottom*   the vertical positions of the bottom edges of the bars
          *width*    the lengths of the bars
          ========   ======================================================

        Optional keyword arguments:

          ===============   ==========================================
          Keyword           Description
          ===============   ==========================================
          *height*          the heights (thicknesses) of the bars
          *left*            the x coordinates of the left edges of the
                            bars
          *color*           the colors of the bars
          *edgecolor*       the colors of the bar edges
          *linewidth*       width of bar edges; None means use default
                            linewidth; 0 means don't draw edges.
          *xerr*            if not None, will be used to generate
                            errorbars on the bar chart
          *yerr*            if not None, will be used to generate
                            errorbars on the bar chart
          *ecolor*          specifies the color of any errorbar
          *capsize*         (default 3) determines the length in
                            points of the error bar caps
          *align*           'edge' (default) | 'center'
          *log*             [False|True] False (default) leaves the
                            horizontal axis as-is; True sets it to log
                            scale
          ===============   ==========================================

        Setting *align* = 'edge' aligns bars by their bottom edges in
        bottom, while *align* = 'center' interprets these values as
        the *y* coordinates of the bar centers.

        The optional arguments *color*, *edgecolor*, *linewidth*,
        *xerr*, and *yerr* can be either scalars or sequences of
        length equal to the number of bars.  This enables you to use
        barh as the basis for stacked bar charts, or candlestick
        plots.

        other optional kwargs:

        %(Rectangle)s
        R�RoRnR�R5R8(RI(R/R�RnRoR�R=R'((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pytbarhdsC!cK s6tj|||�}|j|dt�|j�|S(s�
        call signature::

          broken_barh(self, xranges, yrange, **kwargs)

        A collection of horizontal bars spanning *yrange* with a sequence of
        *xranges*.

        Required arguments:

          =========   ==============================
          Argument    Description
          =========   ==============================
          *xranges*   sequence of (*xmin*, *xwidth*)
          *yrange*    sequence of (*ymin*, *ywidth*)
          =========   ==============================

        kwargs are
        :class:`matplotlib.collections.BrokenBarHCollection`
        properties:

        %(BrokenBarHCollection)s

        these can either be a single argument, ie::

          facecolors = 'black'

        or a sequence of arguments for the various bars, ie::

          facecolors = ('black', 'red', 'green')

        **Example:**

        .. plot:: mpl_examples/pylab_examples/broken_barh.py
        R�(R�tBrokenBarHCollectionR�R	R�(R/txrangestyrangeR=tcol((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pytbroken_barh�s%
sb-sr-c
C s�|j}|js|j�n|jt�|j|||�\}g}xNt||�D]=\}	}
|j|	|	gd|
g|�\}|j|�qZW|jtj|�tj	|�gddg|�\}|j|�|||fS(s�
        call signature::

          stem(x, y, linefmt='b-', markerfmt='bo', basefmt='r-')

        A stem plot plots vertical lines (using *linefmt*) at each *x*
        location from the baseline to *y*, and places a marker there
        using *markerfmt*.  A horizontal line at 0 is is plotted using
        *basefmt*.

        Return value is a tuple (*markerline*, *stemlines*,
        *baseline*).

        .. seealso::

            `this document`__
               for details

            :file:`examples/pylab_examples/stem_plot.py`
               for a demo

        __ http://www.mathworks.com/access/helpdesk/help/techdoc/ref/stem.html

        i(
R�R�RIR	R+RiRoROR?R@(
R/RTRUtlinefmtt	markerfmttbasefmtt
remember_holdt
markerlinet	stemlinesR�R�R{R((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pytstem�s		

$6
g333333�?g�������?c	
C s�|jt�tj|�jtj�}t|j��}	|	dkr[tj||	�}n|dkr}dgt
|�}n|dkr�dgt
|�}n|dkr�d}nd }
d}d}d}
g}g}g}x�tj|||�D]m\}}}|
\}}||}dt
jd
||}||t
j|�7}||t
j|�7}tj||f|d|d|d||
t
|��}|j|�|j|�|j|�|rtj|dd�}|jd|j��|jd�|j|�n|||t
j|�}|||t
j|�}|dkrXdp[d}|j|||dtdd|dd�}|j|�|dk	rQ|||t
j|�}|||t
j|�}t|�r�|d|}n+t|�r|d|�}ntd��|j|||dddd�}|j|�n|}|
d7}
q�W|jd!�|jd"�|j g�|j!g�|dkr�||fS|||fSdS(#so	
        call signature::

          pie(x, explode=None, labels=None,
              colors=('b', 'g', 'r', 'c', 'm', 'y', 'k', 'w'),
              autopct=None, pctdistance=0.6, labeldistance=1.1, shadow=False)

        Make a pie chart of array *x*.  The fractional area of each
        wedge is given by x/sum(x).  If sum(x) <= 1, then the values
        of x give the fractional area directly and the array will not
        be normalized.

        Keyword arguments:

          *explode*: [ None | len(x) sequence ]
            If not *None*, is a len(*x*) array which specifies the
            fraction of the radius with which to offset each wedge.

          *colors*: [ None | color sequence ]
            A sequence of matplotlib color args through which the pie chart
            will cycle.

          *labels*: [ None | len(x) sequence of strings ]
            A sequence of strings providing the labels for each wedge

          *autopct*: [ None | format string | format function ]
            If not *None*, is a string or function used to label the
            wedges with their numeric value.  The label will be placed inside
            the wedge.  If it is a format string, the label will be ``fmt%pct``.
            If it is a function, it will be called.

          *pctdistance*: scalar
            The ratio between the center of each pie slice and the
            start of the text generated by *autopct*.  Ignored if
            *autopct* is *None*; default is 0.6.

          *labeldistance*: scalar
            The radial distance at which the pie labels are drawn

          *shadow*: [ False | True ]
            Draw a shadow beneath the pie.

        The pie chart will probably look best if the figure and axes are
        square.  Eg.::

          figure(figsize=(8,8))
          ax = axes([0.1, 0.1, 0.8, 0.8])

        Return value:
          If *autopct* is None, return the tuple (*patches*, *texts*):

            - *patches* is a sequence of
              :class:`matplotlib.patches.Wedge` instances

            - *texts* is a list of the label
              :class:`matplotlib.text.Text` instances.

          If *autopct* is not *None*, return the tuple (*patches*,
          *texts*, *autotexts*), where *patches* and *texts* are as
          above, and *autotexts* is a list of
          :class:`~matplotlib.text.Text` instances for the numeric
          labels.
        iRiRHtgR*R"R�RURqR|ig�?g�v@R_g{�G�z��g�������?R:R�R�R
sxtick.labelsizeRRR�gY@s+autopct must be callable or a format stringg�g�?N(RHRWR*R"R�RURqR|(ii(g�g�?(g�g�?("R6R
ROR�tastypetfloat32RktsumtdivideRRhRtsafezipRZtpitcostsinRctWedgeRoR�R�tShadowRt
get_zorderRRRR�RBRRRhRx(R/RTtexplodeRpRtautopcttpctdistancetshadowt
labeldistancetsxR�tradiusttheta1RFR(tslicest	autotextstfracR�texplRUttheta2tthetamR|tshadR�R�tlabel_alignmentR+R((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pytpies�B
	%
#




	
		




t-ic&K s	|jd|d|d|�|js2|j�n|j}t|_t|�s\|g}nt|�st|g}n|dk	r�t|�s�|gt|�}q�n|dk	r�t|�s�|gt|�}q�nd}|	r|dk	r|j||||�\}ng}g}idd6}|r8||d<n:d|krU|d|d<nd|krr|d|d<nd|kr�|d|d<nt|
�s�tj	|
gt|�t
�}
ntj	|
t
�}
t|�s�tj|gt|�t
�}ntj	|t
�}t|�s=tj|gt|�t
�}ntj	|t
�}t|
�s}tj|
gt|�t
�}
ntj	|
t
�}
d	�}|d
krid|d6dd6}d
|kr�|d
|d
<nd|kr�|d|d<nd|kr|d|d<qn|dk	r�t|�r�t|�dkr�t|d
�r�t|d�r�gtj
||d
�D]\}}||^qw}gtj
||d�D]\}}||^q�}n^gtj
||�D]\}}||^q�}gtj
||�D]\}}||^q}|j|j||||��|d
kr�|j�r�||||�\}}|j|j||dddtj|��|}||||�\}}|j|j||d|��n|j|j||d|��|
j�r�||||
�\}}|j|j||dddtj|��|
}
||||
�\}}|j|j||d|��q�|j|j||d|��q�n|dk	rVt|�rit|�dkrit|d
�rit|d�rigtj
||d
�D]\}}||^q}gtj
||d�D]\}}||^qJ} n^gtj
||�D]\}}||^q|}gtj
||�D]\}}||^q�} |j|j||| |��|d
krV|
j�r�||||
�\}!}"|j|j|!|"dddtj|��|
}
||||
�\}!}"|j|j|!|"d|��n|j|j||d|��|j�r1||| |�\}#}$|j|j|#|$dddtj|��|}||| |�\}#}$|j|j|#|$d|��qS|j|j|| d|��qVn|	r�|dk	r�|j||||�\}n|dkr�|dkr�|jjj�}q�|j�}nx|D]}%|%j|�q�Wx|D]}%|%j|�q�W|j�||_|||fS(s�
        call signature::

          errorbar(x, y, yerr=None, xerr=None,
                   fmt='-', ecolor=None, elinewidth=None, capsize=3,
                   barsabove=False, lolims=False, uplims=False,
                   xlolims=False, xuplims=False)

        Plot *x* versus *y* with error deltas in *yerr* and *xerr*.
        Vertical errorbars are plotted if *yerr* is not *None*.
        Horizontal errorbars are plotted if *xerr* is not *None*.

        *x*, *y*, *xerr*, and *yerr* can all be scalars, which plots a
        single error bar at *x*, *y*.

        Optional keyword arguments:

          *xerr*/*yerr*: [ scalar | N, Nx1, or 2xN array-like ]
            If a scalar number, len(N) array-like object, or an Nx1 array-like
            object, errorbars are drawn +/- value.

            If a sequence of shape 2xN, errorbars are drawn at -row1 and
            +row2

          *fmt*: '-'
            The plot format symbol. If *fmt* is *None*, only the
            errorbars are plotted.  This is used for adding
            errorbars to a bar plot, for example.

          *ecolor*: [ None | mpl color ]
            a matplotlib color arg which gives the color the errorbar lines;
            if *None*, use the marker color.

          *elinewidth*: scalar
            the linewidth of the errorbar lines. If *None*, use the linewidth.

          *capsize*: scalar
            the size of the error bar caps in points

          *barsabove*: [ True | False ]
            if *True*, will plot the errorbars above the plot
            symbols. Default is below.

          *lolims*/*uplims*/*xlolims*/*xuplims*: [ False | True ]
            These arguments can be used to indicate that a value gives
            only upper/lower limits. In that case a caret symbol is
            used to indicate this. lims-arguments may be of the same
            type as *xerr* and *yerr*.

        All other keyword arguments are passed on to the plot command for the
        markers. For example, this code makes big red squares with
        thick green edges::

          x,y,yerr = rand(3,10)
          errorbar(x, y, yerr, marker='s',
                   mfc='red', mec='green', ms=20, mew=4)

        where *mfc*, *mec*, *ms* and *mew* are aliases for the longer
        property names, *markerfacecolor*, *markeredgecolor*, *markersize*
        and *markeredgewith*.

        valid kwargs for the marker properties are

        %(Line2D)s

        Returns (*plotline*, *caplines*, *barlinecols*):

            *plotline*: :class:`~matplotlib.lines.Line2D` instance
                *x*, *y* plot markers and/or line

            *caplines*: list of error bar cap
                :class:`~matplotlib.lines.Line2D` instances
            *barlinecols*: list of
                :class:`~matplotlib.collections.LineCollection` instances for
                the horizontal and vertical error ranges.

        **Example:**

        .. plot:: mpl_examples/pylab_examples/errorbar_demo.py

        R�R�R=R:R�R-R�R�cS sfgt||�D]\}}|r|^q}gt||�D]\}}|r>|^q>}||fS(so
            return xs[mask], ys[mask] where mask is True but xs and
            ys are not arrays
            (Ri(R�R�RR�RHR�((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pytxywhere%s..iitmstmarkeredgewidthtmewitlsRRsk|tk_N(R�R�R�R	R�RRhR+ROR�R�R�RR\RoR�tanyR
Rt	CARETLEFTt
CARETRIGHTR�t	CARETDOWNtCARETUPR$R3RZt	get_colort	set_colorR�(&R/RTRUR/R.RR1t
elinewidthR2t	barsabovetlolimstuplimstxlolimstxuplimsR=RHtl0tbarcolstcaplinestlines_kwRutplot_kwR�tthiserrR�R�tleftlotylotrightuptyupR�R�RYtxlotlowerlotxuptupperupR{((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pyR>�s�W	
		

""""	
 03,,""% 03,,""%


	sb+g�?c
8
 s!�js�j�n�j}
gggggf\}}}
}}t|d�r-t|j�dkr�t|dd�r�t|�}q*|g}q-t|j�dkr!|j\}}|dkr�|g}q*|dkr�|j�g}q*gt|�D]}|dd�|f^q�}q-td�nt|dd�sL|g}nt|�}|dkrzt
d|d�}n|dkr�t|�t|�}tdt|d	�d
�}nt
|t�s�t
|t�r�tj|ft�|}n�jt�x�t|�D]s\}}tj||�}t|�}|dkrLqntj|ddd
g�\}}}||}|||}tj||k|�}t|�dkr�|}nt|�}|||}tj||k|�}t|�dkr|}nt|�}g} g}!g}"g}#t|�dkr�tj||k|�} tj||k|�}!tj| jd�|}"tj|!jd�|}#n|||d
}$|||d
}%tjd�|}&|||d}'|||d}(|'|(g})||g}*|dkr]|$|%|%|$|$g}+|||||g},|$|%g}-n�|	dk	r�dd�}.|.|d|	�}/|/d}0|/d}1n6|d|tj|�}0|d|tj|�}1|$|%|%|(|%|%|$|$|'|$|$g}+|||1||0|||0||1|g},|'|(g}-||g}*d����fd��|r|�fd�}2�fd�}3n�fd�}2�fd�}3|r�d}4nd}4|j|2|&||gd|&||gd��|j|2|)||gd|)||gd��|r*|
j|3|+|,��n|
j|2|+|,d��|j|2|-|*|4d��|j|2|"| ||#|!|��qWd|kr��j�j}5}6n�j�j}5}6t|�d
t|�d
f}7|6|7�|5|��j|
�td|d |d!|
d"|d#|�S($s�	
        call signature::

          boxplot(x, notch=0, sym='+', vert=1, whis=1.5,
                  positions=None, widths=None, patch_artist=False)

        Make a box and whisker plot for each column of *x* or each
        vector in sequence *x*.  The box extends from the lower to
        upper quartile values of the data, with a line at the median.
        The whiskers extend from the box to show the range of the
        data.  Flier points are those past the end of the whiskers.

        *x* is an array or a sequence of vectors.

        - *notch* = 0 (default) produces a rectangular box plot.
        - *notch* = 1 will produce a notched box plot

        *sym* (default 'b+') is the default symbol for flier points.
        Enter an empty string ('') if you don't want to show fliers.

        - *vert* = 1 (default) makes the boxes vertical.
        - *vert* = 0 makes horizontal boxes.  This seems goofy, but
          that's how MATLAB did it.

        *whis* (default 1.5) defines the length of the whiskers as
        a function of the inner quartile range.  They extend to the
        most extreme data point within ( ``whis*(75%-25%)`` ) data range.

        *bootstrap* (default None) specifies whether to bootstrap the
        confidence intervals around the median for notched
        boxplots. If bootstrap==None, no bootstrapping is performed,
        and notches are calculated using a Gaussian-based asymptotic
        approximation (see McGill, R., Tukey, J.W., and Larsen, W.A.,
        1978, and Kendall and Stuart, 1967). Otherwise, bootstrap
        specifies the number of times to bootstrap the median to
        determine it's 95% confidence intervals. Values between 1000
        and 10000 are recommended.

        *positions* (default 1,2,...,n) sets the horizontal positions of
        the boxes. The ticks and limits are automatically set to match
        the positions.

        *widths* is either a scalar or a vector and sets the width of
        each box. The default is 0.5, or ``0.15*(distance between extreme
        positions)`` if that is smaller.

        - *patch_artist* = False (default) produces boxes with the Line2D artist
        - *patch_artist* = True produces boxes with the Patch artist

        Returns a dictionary mapping each component of the boxplot
        to a list of the :class:`matplotlib.lines.Line2D`
        instances created.

        **Example:**

        .. plot:: pyplots/boxplot_demo.py
        RQiiiNs*input x can have no more than 2 dimensionst__len__g333333�?g�?g�?ii2iKg�?i�c	S s�t|�}ddg}tj|�}xPt|�D]B}tjjd|d|�}||}tj|d�||<q4Wtj||�}|S(Ng@g`X@iii2(RhROtzerostrangetrandomtrandom_integerstmlabtprctile(	tdatatNtMt
percentiletestimateRDtbsIndextbsDatatCI((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pytbootstrapMedian<s
R�g��Q��?cS s�g}x0t||�D]\}}|j||f�qW|jd�tjjgtjjgt|�dtjjg}||fS(Nii(ii(RiRotmpathtPathtMOVETOtLINETORht	CLOSEPOLY(R�R�R�txityitcodes((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pytto_vc_s
'c sJ�||�\}}tj||�}tj|�}�j|�|gS(N(R�R�Rct	PathPatchR�(R�R�R�R�R�R6(R/R�(sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pyt
patch_listks

c s
�j|�S(N(R+(R<(R/(sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pytdoplottsc s
�||�S(N((R�R�(R�(sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pytdopatchvsc s`g}xJtdt|�d�D]0}|j||d||||dg�qW�j|�S(Niiii(RmRhR
R+(R<tshuffledRF(R/(sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pyR�ys.c s||}}�||�S(N((R�R�(R�(sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pyR�~s
RqR*sb--sk-sb-Rttwhiskerstcapstboxestmedianstfliers(R�R�RARhRQR;travelRmRRR�RnR�R�RkRROtonesRIR	t	enumerateR�R�tcompressR�R
RhRRxRRP(8R/RTtnotchtsymtverttwhist	positionstwidthstpatch_artistt	bootstrapt
holdStatusR�R�R�R�R�tnrtncRFRNtdistanceR�R
trowtq1tmedtq3tiqthi_valtwisk_hitlo_valtwisk_lotflier_hitflier_lot
flier_hi_xt
flier_lo_xt	box_x_mint	box_x_maxtwisk_xt	cap_x_mint	cap_x_maxtcap_xtmed_ytbox_xtbox_ytmed_xR�R�t	notch_maxt	notch_minR�R�tmedian_colortsettickstsetlimt	newlimits((R�R/R�sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pytboxplot�s�<	
	$2
$
		


			 


iRHRc%K s�|js|j�nidtjddfd6d'd6d(d6dtjddfd	6dtjdfd
6ddtjddfd6d)d6d*d6d+d6d,d6d-d6dtjddfd6}|jd|d|d|�|j|�}|j|�}tjj	|�}tjj	|�}|j
|j
kr?td��ntjj	|�}t|�pft
|�}|s�tj|�}|j
|j
kr�tjj	|�}q�ntj||||�\}}}}|}|r�tjj||
�}n0|j
|j
krd%}ntjj||
�}|r/d%}nd}tjdt�d%}d}|d%kr~|
d%k	r~|
df}d%}
nt|�r�|j|�}|d%kr�|
d%kr�td��n||\}}}n�t|�r�t|�dkst|�dkrtd��ntj|d�r�t|�dkrN|dd}}n*t|�dkrx|d|d}}nt}|dd.kr�|d}q�q�tj|d�}
n|d%k	r�|dkrtj|||d |d!|d"|d#t ||�d$|j!�}q�|dkr\tj"|||d |d!|d"|d#t ||�d$|j!�}q�|dkr�tj#|||d |d!|d"|d#t ||�d$|j!�}q�|dkr�tj$|d |d!|d"|d#t ||�d$|j!�}q�n�tj%t&|
d%d%�dfd|
d%d%�dfd��}|
|}
tj'|
f|d |d!|d"|d#t ||�d$|j!�}|j(t)j*��|j+|
�|j,|�|d%kr/|d%k	r�n|j-tj|��|j.|�|j/|�|d%k	s|	d%k	r"|j0||	�q/|j1�n|}|}tj2|�}tj3|�}tj2|�}tj3|�}||} ||}!d&| d&|!}"}#||"||#f||"||#ff}$|j4|$�|j5�|j6|�|S(/sa
        call signatures::

          scatter(x, y, s=20, c='b', marker='o', cmap=None, norm=None,
                  vmin=None, vmax=None, alpha=None, linewidths=None,
                  verts=None, **kwargs)

        Make a scatter plot of *x* versus *y*, where *x*, *y* are
        converted to 1-D sequences which must be of the same length, *N*.

        Keyword arguments:

          *s*:
            size in points^2.  It is a scalar or an array of the same
            length as *x* and *y*.

          *c*:
            a color. *c* can be a single color format string, or a
            sequence of color specifications of length *N*, or a
            sequence of *N* numbers to be mapped to colors using the
            *cmap* and *norm* specified via kwargs (see below). Note
            that *c* should not be a single numeric RGB or RGBA
            sequence because that is indistinguishable from an array
            of values to be colormapped.  *c* can be a 2-D array in
            which the rows are RGB or RGBA, however.

          *marker*:
            can be one of:

            =======   ==============
            Value     Description
            =======   ==============
            ``'s'``   square
            ``'o'``   circle
            ``'^'``   triangle up
            ``'>'``   triangle right
            ``'v'``   triangle down
            ``'<'``   triangle left
            ``'d'``   diamond
            ``'p'``   pentagon
            ``'h'``   hexagon
            ``'8'``   octagon
            ``'+'``   plus
            ``'x'``   cross
            =======   ==============

            The marker can also be a tuple (*numsides*, *style*,
            *angle*), which will create a custom, regular symbol.

              *numsides*:
                the number of sides

              *style*:
                the style of the regular symbol:

                =====   =============================================
                Value   Description
                =====   =============================================
                0       a regular polygon
                1       a star-like symbol
                2       an asterisk
                3       a circle (*numsides* and *angle* is ignored)
                =====   =============================================

              *angle*:
                the angle of rotation of the symbol

            Finally, *marker* can be (*verts*, 0): *verts* is a
            sequence of (*x*, *y*) vertices for a custom scatter
            symbol.  Alternatively, use the kwarg combination
            *marker* = *None*, *verts* = *verts*.

        Any or all of *x*, *y*, *s*, and *c* may be masked arrays, in
        which case all masks will be combined and only unmasked points
        will be plotted.

        Other keyword arguments: the color mapping and normalization
        arguments will be used only if *c* is an array of floats.

          *cmap*: [ None | Colormap ]
            A :class:`matplotlib.colors.Colormap` instance or registered
            name. If *None*, defaults to rc ``image.cmap``. *cmap* is
            only used if *c* is an array of floats.

          *norm*: [ None | Normalize ]
            A :class:`matplotlib.colors.Normalize` instance is used to
            scale luminance data to 0, 1. If *None*, use the default
            :func:`normalize`. *norm* is only used if *c* is an array
            of floats.

          *vmin*/*vmax*:
            *vmin* and *vmax* are used in conjunction with norm to
            normalize luminance data.  If either are None, the min and
            max of the color array *C* is used.  Note if you pass a
            *norm* instance, your settings for *vmin* and *vmax* will
            be ignored.

          *alpha*: 0 <= scalar <= 1  or None
            The alpha value for the patches

          *linewidths*: [ None | scalar | sequence ]
            If *None*, defaults to (lines.linewidth,).  Note that this
            is a tuple, and if you set the linewidths argument you
            must set it as a sequence of floats, as required by
            :class:`~matplotlib.collections.RegularPolyCollection`.

        Optional kwargs control the
        :class:`~matplotlib.collections.Collection` properties; in
        particular:

          *edgecolors*:
            The string 'none' to plot faces with no outlines

          *facecolors*:
            The string 'none' to plot unfilled outlines

        Here are the standard descriptions of all the
        :class:`~matplotlib.collections.Collection` kwargs:

        %(Collection)s

        A :class:`~matplotlib.collections.Collection` instance is
        returned.
        ig@iRiRt^g@t>Rrt<R
iR�iR}it8it+RTR�R�R=sx and y must be the same sizetnones0replace "faceted=False" with "edgecolors='none'"s Unknown marker symbol to scatters&Cannot create markersymbol from markergit
facecolorst
edgecolorst
linewidthstoffsetsttransOffsetNg�������?(iii(iii(iii(iii(iii(iii(iii(iii(7R�R�RZR]R�RMRNRORR�R
RRtis_sequence_of_stringst
asanyarrayRtdelete_masked_pointsRRR<RR%R&R'RlR�Rht
is_numlikeR	R�R�RRiR�tStarPolygonCollectiontAsteriskPolygonCollectionRR�RntPolyCollectionR�R�R�t	set_alphaR�t	set_arraytset_cmaptset_normtset_climtautoscale_NoneR?R@R�R�R�(%R/RTRURR"RtcmaptnormtvmintvmaxR�R�tfacetedR�R=tsymstc_is_stringytscalesRR�R�tsymstyletnumsidestrotationR�trescalettemp_xttemp_yR�R�R�R�R|R}tpadxtpadyR�((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pytscatter�s�	
$			$A







(


idRR�cE	 s�|js|j�n|jd|d|d|�tj|||�\}}}t|�rk|\}}n|}t|tjd��}t	j
|t�}t	j
|t�}|dkr�t	j|dk�r�t
d��nt	j|�}n|dkr2t	j|dk�r t
d��nt	j|�}n|dk	rS|\}}}}n<t	j|�}t	j|�}t	j|�}t	j|�}d	||}||8}||7}|||}|||}|r�|j�}|j�}n|||}|||}t	j|�jt�}t	j|�jt�} t	j|�jt�}!t	j|�jt�}"|d
}#|d
}$|}%|}&|#|$|%|&}'||dd|| d}(||!d
dd||"d
d})|(|)k}*|dkr6t	j|'�}+|+|#|$ },|+|#|$}-|#|$f|,_|%|&f|-_x�tt|��D]�}.|*|.r�||.dkr)||.|#kr)| |.dkr)| |.|$kr)|,||.| |.fcd
7<q)qT|!|.dkrT|!|.|%krT|"|.dkrT|"|.|&krT|-|!|.|"|.fcd
7<qTqTW|dk	r�xWt|#�D]I}.x@t|$�D]2}/|,|.|/f|krYt	j|,|.|/f<qYqYWqFWxZt|%�D]I}.x@t|&�D]2}/|-|.|/f|kr�t	j|-|.|/f<q�q�Wq�Wnt	j|,jt�j�|-jt�j�f�}+t	j|+�}0n�|dkrKd}nt	j|#|$fdt�},x;t|#�D]-}.x$t|$�D]}/g|,|.|/f<q�WqsWt	j|%|&fdt�}-x;t|%�D]-}.x$t|&�D]}/g|-|.|/f<q�Wq�Wx�tt|��D]�}.|*|.r�||.dkr�||.|#kr�| |.dkr�| |.|$kr�|,||.| |.fj ||.�q�q|!|.dkr|!|.|%kr|"|.dkr|"|.|&kr|-|!|.|"|.fj ||.�qqWxyt|#�D]k}.xbt|$�D]T}/|,|.|/f}1t|1�|krT�|1�|,|.|/f<qt	j|,|.|/f<qWqWxyt|%�D]k}.xbt|&�D]T}/|-|.|/f}1t|1�|kr��|1�|-|.|/f<q�t	j|-|.|/f<q�Wq|Wt	j|,jt�j�|-jt�j�f�}+t	j|+�}0||t	j
d
d
ddddg�}2||t	j
dd
dd
ddg�d}3t	jd|'dft�}4t	j!t	j"|#�|$�|4dd�d|#|$�df<t	j#t	j"|$�|#�|4dd�d|#|$�d
f<t	j!t	j"|%�d
|&�|4dd�|#|$d�df<t	j#t	j"|&�|%�d
|4dd�|#|$d�d
f<|4dd�|0dd�f}4|+|0}+t	j$|4dd
ddg�}4|4dd�dd�dfc|9<|4dd�dd�d
fc|9<|4dd�dd�dfc|27<|4dd�dd�d
fc|37<|dkr�
d|4dd�dd�df|4dd�dd�df<d|}d|}|j%d�n|dkr:d|4dd�dd�d
f|4dd�dd�d
f<d|}d|}|j&d�n|dkrOd}nt'j(|4d|d|d|j)�}5t*|
t+j,�r�|+dkj�r�|+d
7}+q�n|
dk	r�|
j-dkr�|
j.dkr�|
j/|+�q�n|dkrt	j|+d
�}+n~|dkr�t|�sct0|+�t1|+�}6}7|d
8}|6|7|6t	j"|�|}nt	j2|�}|j3|+�}+n|
dk	r�n|5j4|+�|5j5|	�|5j6|
�|5j7|
�|5j8|�|dk	s�|dk	r�|5j9||�n
|5j:�||f||ff}8|j;|8�|j<dt=�|j>|5�|sU
|5S|dkry
t	j?t|��}n�fd�}9t	j@|||�}:|9|||:�};t	j|;�}<gg}=}>x�tA|;�D]�\}.}?|:|.}@|.t|:�d
kr|:|.d
}An|@t	jB|:�d}A|<|.s=q�
n|=j |@df|@df|Adf|Adfg�|>j |?�q�
Wt	j
|>�}>tCjD|j)|jE�}Bt'j(|=d |Bdd���j4|>��j5|	��j6|
��j7|
��j8|�|j>��t	j@|||�}:|9|||:�}Ct	j|C�}<gg}=}>x�tA|C�D]�\}.}?|:|.}@|.t|:�d
kr�|:|.d
}An|@t	jB|:�d}A|<|.s�q`n|=j d|@fd|Afd|Afd|@fg�|>j |?�q`Wt	j
|>�}>tCjD|jE|j)�}Bt'j(|=d |Bdd���j4|>��j5|	��j6|
��j7|
��j8|�|j>���|5_F�|5_G��fd!�}D|5jHjId"|D�|5S(#sN
        call signature::

          hexbin(x, y, C = None, gridsize = 100, bins = None,
                 xscale = 'linear', yscale = 'linear',
                 cmap=None, norm=None, vmin=None, vmax=None,
                 alpha=None, linewidths=None, edgecolors='none'
                 reduce_C_function = np.mean, mincnt=None, marginals=True
                 **kwargs)

        Make a hexagonal binning plot of *x* versus *y*, where *x*,
        *y* are 1-D sequences of the same length, *N*. If *C* is None
        (the default), this is a histogram of the number of occurences
        of the observations at (x[i],y[i]).

        If *C* is specified, it specifies values at the coordinate
        (x[i],y[i]). These values are accumulated for each hexagonal
        bin and then reduced according to *reduce_C_function*, which
        defaults to numpy's mean function (np.mean). (If *C* is
        specified, it must also be a 1-D sequence of the same length
        as *x* and *y*.)

        *x*, *y* and/or *C* may be masked arrays, in which case only
        unmasked points will be plotted.

        Optional keyword arguments:

          *gridsize*: [ 100 | integer ]
            The number of hexagons in the *x*-direction, default is
            100. The corresponding number of hexagons in the
            *y*-direction is chosen such that the hexagons are
            approximately regular. Alternatively, gridsize can be a
            tuple with two elements specifying the number of hexagons
            in the *x*-direction and the *y*-direction.

          *bins*: [ None | 'log' | integer | sequence ]
            If *None*, no binning is applied; the color of each hexagon
            directly corresponds to its count value.

            If 'log', use a logarithmic scale for the color
            map. Internally, :math:`log_{10}(i+1)` is used to
            determine the hexagon color.

            If an integer, divide the counts in the specified number
            of bins, and color the hexagons accordingly.

            If a sequence of values, the values of the lower bound of
            the bins to be used.

          *xscale*: [ 'linear' | 'log' ]
            Use a linear or log10 scale on the horizontal axis.

          *scale*: [ 'linear' | 'log' ]
            Use a linear or log10 scale on the vertical axis.

          *mincnt*: None | a positive integer
            If not None, only display cells with more than *mincnt*
            number of points in the cell

          *marginals*: True|False
            if marginals is True, plot the marginal density as
            colormapped rectagles along the bottom of the x-axis and
            left of the y-axis

          *extent*: [ None | scalars (left, right, bottom, top) ]
            The limits of the bins. The default assigns the limits
            based on gridsize, x, y, xscale and yscale.

        Other keyword arguments controlling color mapping and normalization
        arguments:

          *cmap*: [ None | Colormap ]
            a :class:`matplotlib.cm.Colormap` instance. If *None*,
            defaults to rc ``image.cmap``.

          *norm*: [ None | Normalize ]
            :class:`matplotlib.colors.Normalize` instance is used to
            scale luminance data to 0,1.

          *vmin*/*vmax*: scalar
            *vmin* and *vmax* are used in conjunction with *norm* to normalize
            luminance data.  If either are *None*, the min and max of the color
            array *C* is used.  Note if you pass a norm instance, your settings
            for *vmin* and *vmax* will be ignored.

          *alpha*: scalar between 0 and 1, or None
            the alpha value for the patches

          *linewidths*: [ None | scalar ]
            If *None*, defaults to rc lines.linewidth. Note that this
            is a tuple, and if you set the linewidths argument you
            must set it as a sequence of floats, as required by
            :class:`~matplotlib.collections.RegularPolyCollection`.

        Other keyword arguments controlling the Collection properties:

          *edgecolors*: [ None | mpl color | color sequence ]
            If 'none', draws the edges in the same color as the fill color.
            This is the default, as it avoids unsightly unpainted pixels
            between the hexagons.

            If *None*, draws the outlines in the default color.

            If a matplotlib color arg or sequence of rgba tuples, draws the
            outlines in the specified color.

        Here are the standard descriptions of all the
        :class:`~matplotlib.collections.Collection` kwargs:

        %(Collection)s

        The return value is a
        :class:`~matplotlib.collections.PolyCollection` instance; use
        :meth:`~matplotlib.collection.PolyCollection.get_array` on
        this :class:`~matplotlib.collections.PolyCollection` to get
        the counts in each hexagon..  If marginals is True, horizontal
        bar and vertical bar (both PolyCollections) will be attached
        to the return collection as attributes *hbar* and *vbar*


        **Example:**

        .. plot:: mpl_examples/pylab_examples/hexbin_demo.py

        R�R�R=iRfgs8x contains non-positive values, so can not be log-scaleds8y contains non-positive values, so can not be log-scaledg��&�.>iig@g�?iRgg�g�?g�iNR,i
R�tfaceR�R�R�R�c s{|j|�jdt|�d�}tjt|��}x:tt|��D]&}�|||k�}|||<qMW|S(Nii(tsearchsortedtclipRhROR�R�(RTRUtcoarsetindtmusRFtmu(treduce_C_function(sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pyt
coarse_binBs%i����g�������?R�c sP�j|j���j|j���j|j���j|j��dS(N(R�tget_cmapR�tget_clim(R�(thbartvbar(sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pyt
on_changed�stchanged(JR�R�R�RR�R�RRZR�ROR�RkR{RRcRR?R@RYRRXtfloorR�RQRmRhtnanReR�tisnantemptytobjectRotrepeatRjttilet	transposeR�R�R�R�R�R�RtLogNormRRR�R�RnRRR�R�R�R�R�R�R�R�R�R	R�R�tlinspaceR�tdiffR�R�R�RRtcallbacksSMR�(ER/RTRUR�tgridsizetbinsR�R�textentR�RRRR�R�R�Rtmincntt	marginalsR=tnxtnyR\R]R^R_tpaddingRhtsytxorigtyorigtix1tiy1tix2tiy2tnx1tny1tnx2tny2RDtd1td2tbdisttaccumtlattice1tlattice2RFRut	good_idxstvalstpxtpytpolygonsR�tminimumtmaximumR�RRtxcoarsetvalidR�tvaluesRFtthismintthismaxR�tycoarseR((RRRsB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pythexbin�s��	




&
  $  %!-	
  )  *-)-88<<
%%%%<

<

	
"










1








1





		cK s,tj|||||�}|j|�|S(sI
        call signature::

           arrow(x, y, dx, dy, **kwargs)

        Draws arrow on specified axis from (*x*, *y*) to (*x* + *dx*,
        *y* + *dy*).

        Optional kwargs control the arrow properties:
        %(FancyArrow)s

        **Example:**

        .. plot:: mpl_examples/pylab_examples/arrow_demo.py
        (Rct
FancyArrowR�(R/RTRUR�R�R=R�((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pytarrow�s
cO s#tj||�}|j|�|S(N(tmquivert	QuiverKeyR�(R/R<R\tqk((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pyt	quiverkey�s
cO sY|js|j�ntj|||�}|j|t�|j|j�|j�|S(N(	R�R�RTtQuiverR�R
R�tXYR�(R/R<R\tq((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pytquiver�s	

cO sY|js|j�ntj|||�}|j|�|j|j��|j�|S(sp
        %(barbs_doc)s
        **Example:**

        .. plot:: mpl_examples/pylab_examples/barb_demo.py
        (R�R�RTtBarbsR�R�tget_offsetsR�(R/R<R\RH((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pytbarbs�s	


cO sa|js|j�ng}x4|j||�D] }|j|�|j|�q/W|j�|S(sf
        call signature::

          fill(*args, **kwargs)

        Plot filled polygons.  *args* is a variable length argument,
        allowing for multiple *x*, *y* pairs with an optional color
        format string; see :func:`~matplotlib.pyplot.plot` for details
        on the argument parsing.  For example, to plot a polygon with
        vertices at *x*, *y* in blue.::

          ax.fill(x,y, 'b' )

        An arbitrary number of *x*, *y*, *color* groups can be specified::

          ax.fill(x1, y1, 'g', x2, y2, 'r')

        Return value is a list of :class:`~matplotlib.patches.Patch`
        instances that were added.

        The same color strings that :func:`~matplotlib.pyplot.plot`
        supports are supported by the fill format string.

        If you would like to fill below a curve, eg. shade a region
        between 0 and *y* along *x*, use :meth:`fill_between`

        The *closed* kwarg will close the polygon when *True* (default).

        kwargs control the Polygon properties:

        %(Polygon)s

        **Example:**

        .. plot:: mpl_examples/pylab_examples/fill_demo.py

        (R�R�R%R�RoR�(R/R<R=R'tpoly((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pyR`�s'	


c	 s�|jd�d�d|�|jd��tj|j����tj|j����tj|j�����jdkr�tj����n�jdkr�tj����n|d
kr�tjt	��tj
�}ntj|tj
�}�j�jko+�jko+|jkns?t
d��nttjtj��tj��tj��g�}|tjk	r�||M}ng}x�tj|�D]\}	}
g}�|	|
!}�|	|
!}
�|	|
!}t	|�s�q�nt	|�}tjd|ddftj�}|rX���fd�}||	�}||
�}n(|d|df}|d|df}||d<|||d	<||d	|d	�df<|
|d	|d	�d	f<|d
d
d�||dd
�df<|d
d
d�||dd
�d	f<|j|�q�Wtj||�}tj�|�|g�j}tj�|�|g�j}|jj||jdtdt�|jj||jdt dt�|j!|�|j"�|S(
s�
        call signature::

          fill_between(x, y1, y2=0, where=None, **kwargs)

        Create a :class:`~matplotlib.collections.PolyCollection`
        filling the regions between *y1* and *y2* where
        ``where==True``

        *x*
          an N length np array of the x data

        *y1*
          an N length scalar or np array of the y data

        *y2*
          an N length scalar or np array of the y data

        *where*
           if None, default to fill between everywhere.  If not None,
           it is a a N length numpy boolean array and the fill will
           only happen over the regions where ``where==True``

        *interpolate*
           If True, interpolate between the two lines to find the
           precise point of intersection.  Otherwise, the start and
           end points of the filled region will only occur on explicit
           values in the *x* array.

        *kwargs*
          keyword args passed on to the :class:`PolyCollection`

        kwargs control the Polygon properties:

        %(PolyCollection)s

        .. plot:: mpl_examples/pylab_examples/fill_between_demo.py

        .. seealso::

            :meth:`fill_betweenx`
                for filling between two sets of x-values

        R�R�R=is$Argument dimensions are incompatibleic st|dd�}�||d!}�||d!�||d!}�||d!}t|�dkr�tjj|d�r��|�|fStjj|d�r��|�|fSn|j�}tjd||||�}tj|||�}||fS(Niii(RnRhRORt	is_maskedtargsorttinterp(Rtim1tx_valuestdiff_valuest	y1_valuest
diff_ordertdiff_root_xtdiff_root_y(RTRCR�(sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pytget_interp_pointPs i����iNR�R�(#R�ROR�RMRNRRt	ones_likeRR�RhR�R�RQRtreduceRtmask_ortgetmasktnomaskR�tcontiguous_regionsR�RkRoR�R�R�R�R�R�RR	R
R�R�(R/RTRCR�R'tinterpolateR=Rtpolystind0tind1t
thesevertstxslicety1slicety2sliceR�tXRjR�tendR�tXY1tXY2((RTRCR�sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pytfill_between�sf03	-


#
''  



c	K s�|jd|d|d|�|jd|�tj|j|��}tj|j|��}tj|j|��}|jdkr�tj|�|}n|jdkr�tj|�|}n|d	kr�tjt	|�tj
�}ntj|tj
�}|j|jko+|jko+|jkns?t
d��nttjtj|�tj|�tj|�g�}|tjk	r�||M}ng}xNtj|�D]=\}}	g}
|||	!}|||	!}|||	!}
t	|�s�q�nt	|�}tjd|ddftj�}|
d|df|d<|
d|df||d<||d|d�df<||d|d�df<|
d	d	d�||dd	�df<|d	d	d�||dd	�df<|j|�q�Wtj||�}tj||||g�j}tj||||g�j}|jj||jd
tdt�|jj||jd
t dt�|j!|�|j"�|S(s�
        call signature::

          fill_between(y, x1, x2=0, where=None, **kwargs)

        Create a :class:`~matplotlib.collections.PolyCollection`
        filling the regions between *x1* and *x2* where
        ``where==True``

        *y*
          an N length np array of the y data

        *x1*
          an N length scalar or np array of the x data

        *x2*
          an N length scalar or np array of the x data

        *where*
           if None, default to fill between everywhere.  If not None,
           it is a a N length numpy boolean array and the fill will
           only happen over the regions where ``where==True``

        *kwargs*
          keyword args passed on to the :class:`PolyCollection`

        kwargs control the Polygon properties:

        %(PolyCollection)s

        .. plot:: mpl_examples/pylab_examples/fill_betweenx_demo.py

        .. seealso::

            :meth:`fill_between`
                for filling between two sets of y-values

        R�R�R=is$Argument dimensions are incompatibleii����iNR�R�(#R�ROR�RNRMRRRkRR�RhR�R�RQRRlRRmRnRoR�RpR�RkRoR�R�R�R�R�R�RR	R
R�R�(R/RURAR�R'R=RRrRsRtRutyslicetx1slicetx2sliceR�R�R�tX1YtX2Y((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pyt
fill_betweenx�sZ)3	-


#''  



g@c sE�js�j�n|dk	r%n|dkr>td}n�j|�tj�||||	|
d|d|
d||�}|j|�|j|��j	|�|j
�dkr�|j�j�n|dk	s�|dk	r�|j
||�n
|j�|j|�|j|j���jj|��fd�|_|S(s�
        call signature::

          imshow(X, cmap=None, norm=None, aspect=None, interpolation=None,
                 alpha=None, vmin=None, vmax=None, origin=None, extent=None,
                 **kwargs)

        Display the image in *X* to current axes.  *X* may be a float
        array, a uint8 array or a PIL image. If *X* is an array, *X*
        can have the following shapes:

        * MxN -- luminance (grayscale, float array only)
        * MxNx3 -- RGB (float or uint8 array)
        * MxNx4 -- RGBA (float or uint8 array)

        The value for each component of MxNx3 and MxNx4 float arrays should be
        in the range 0.0 to 1.0; MxN float arrays may be normalised.

        An :class:`matplotlib.image.AxesImage` instance is returned.

        Keyword arguments:

          *cmap*: [ None | Colormap ]
            A :class:`matplotlib.cm.Colormap` instance, eg. cm.jet.
            If *None*, default to rc ``image.cmap`` value.

            *cmap* is ignored when *X* has RGB(A) information

          *aspect*: [ None | 'auto' | 'equal' | scalar ]
            If 'auto', changes the image aspect ratio to match that of the axes

            If 'equal', and *extent* is *None*, changes the axes
            aspect ratio to match that of the image. If *extent* is
            not *None*, the axes aspect ratio is changed to match that
            of the extent.

            If *None*, default to rc ``image.aspect`` value.

          *interpolation*:

            Acceptable values are *None*, 'nearest', 'bilinear',
            'bicubic', 'spline16', 'spline36', 'hanning', 'hamming',
            'hermite', 'kaiser', 'quadric', 'catrom', 'gaussian',
            'bessel', 'mitchell', 'sinc', 'lanczos'

            If *interpolation* is *None*, default to rc
            ``image.interpolation``. See also the *filternorm* and
            *filterrad* parameters

          *norm*: [ None | Normalize ]
            An :class:`matplotlib.colors.Normalize` instance; if
            *None*, default is ``normalization()``.  This scales
            luminance -> 0-1

            *norm* is only used for an MxN float array.

          *vmin*/*vmax*: [ None | scalar ]
            Used to scale a luminance image to 0-1.  If either is
            *None*, the min and max of the luminance values will be
            used.  Note if *norm* is not *None*, the settings for
            *vmin* and *vmax* will be ignored.

          *alpha*: scalar
            The alpha blending value, between 0 (transparent) and 1 (opaque)
            or *None*

          *origin*: [ None | 'upper' | 'lower' ]
            Place the [0,0] index of the array in the upper left or lower left
            corner of the axes. If *None*, default to rc ``image.origin``.

          *extent*: [ None | scalars (left, right, bottom, top) ]
            Data limits for the axes.  The default assigns zero-based row,
            column indices to the *x*, *y* centers of the pixels.

          *shape*: [ None | scalars (columns, rows) ]
            For raw buffer images

          *filternorm*:
            A parameter for the antigrain image resize filter.  From the
            antigrain documentation, if *filternorm* = 1, the filter normalizes
            integer values and corrects the rounding errors. It doesn't do
            anything with the source floating point values, it corrects only
            integers according to the rule of 1.0 which means that any sum of
            pixel weights must be equal to 1.0.  So, the filter function must
            produce a graph of the proper shape.

          *filterrad*:
            The filter radius for filters that have a radius
            parameter, i.e. when interpolation is one of: 'sinc',
            'lanczos' or 'blackman'

        Additional kwargs are :class:`~matplotlib.artist.Artist` properties:

        %(Artist)s

        **Example:**

        .. plot:: mpl_examples/pylab_examples/image_demo.py
        simage.aspectt
filternormt	filterradtresamplec s�jj|�S(N(R+R�(R}(R/(sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pyR�tsN(R�R�RRR�RR�tset_dataR�RR�R<R6R�R�tset_urlt
set_extentt
get_extentR+RoR�(R/RyR�RROt
interpolationR�RRtoriginR-RQR�R�timlimR�turlR=R�((R/sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pytimshow�s.i	







cG s�t|�dkr`|d}|j\}}tjtj|d�tj|d��\}}n:t|�dkr�|\}}}ntd||f��|jd}|jd}	t|j�dks�|jddkr|jd|�}
|
j|	dd�}nt|j�dks.|jddkrX|j|	d�}|j|dd�}n|j|jkr�td||f��n|||fS(	Niiis%Illegal arguments to %s; see help(%s)i����iR�s,Incompatible X, Y inputs to %s; see help(%s)(RhRQROtmeshgridRjRBtreshapeR$(R/tfuncnameR<R�tnumRowstnumColsRyR�RtNyRTRU((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pyt_pcolorargsys*
5

((c(
O sY|js|j�n|jdd�}|jdd�}|jdd�}|jdd�}|jdd�}|jdd�}|jd|�\}	}
}|	j\}}
tj|�}tj|	�}	tj|
�}
tj|	�tj|
�}|d	d
�d	d
�f|dd�dd�f|d	d
�dd�f|dd�d	d
�f}tj|�d	|d�d	|
d�f|}t	j
}t	j}|d	kj�}||tj
|	d	d
�d	d
�f�j��}||tj
|
d	d
�d	d
�f�j��}||tj
|	dd�d	d
�f�j��}||tj
|
dd�d	d
�f�j��}||tj
|	dd�dd�f�j��}||tj
|
dd�dd�f�j��}||tj
|	d	d
�dd�f�j��}||tj
|
d	d
�dd�f�j��}t|�}t	j|dd�|f|dd�|f|dd�|f|dd�|f|dd�|f|dd�|f|dd�|f|dd�|f|dd�|f|dd�|ff
d
d�}|j|ddf�}||tj
|d	|d�d	|
d�f�j��}|dkr�d}nd}d}d|kr�|jd�|d<nd|kr�|jd�|d<nd|kr|jd�|d<n|jd|�|jd|�tj||�} | j|�| j|�|dk	rin| j|�| j|�|dk	s�|dk	r�| j||�n
| j�|jt�|	j�}!|
j�}"t	j|!�}#t	j|!�}$t	j|"�}%t	j|"�}&|#|%f|$|&ff}'|j|'�|j �|j!| �| S(s"
        call signatures::

          pcolor(C, **kwargs)
          pcolor(X, Y, C, **kwargs)

        Create a pseudocolor plot of a 2-D array.

        *C* is the array of color values.

        *X* and *Y*, if given, specify the (*x*, *y*) coordinates of
        the colored quadrilaterals; the quadrilateral for C[i,j] has
        corners at::

          (X[i,   j],   Y[i,   j]),
          (X[i,   j+1], Y[i,   j+1]),
          (X[i+1, j],   Y[i+1, j]),
          (X[i+1, j+1], Y[i+1, j+1]).

        Ideally the dimensions of *X* and *Y* should be one greater
        than those of *C*; if the dimensions are the same, then the
        last row and column of *C* will be ignored.

        Note that the the column index corresponds to the
        *x*-coordinate, and the row index corresponds to *y*; for
        details, see the :ref:`Grid Orientation
        <axes-pcolor-grid-orientation>` section below.

        If either or both of *X* and *Y* are 1-D arrays or column vectors,
        they will be expanded as needed into the appropriate 2-D arrays,
        making a rectangular grid.

        *X*, *Y* and *C* may be masked arrays.  If either C[i, j], or one
        of the vertices surrounding C[i,j] (*X* or *Y* at [i, j], [i+1, j],
        [i, j+1],[i+1, j+1]) is masked, nothing is plotted.

        Keyword arguments:

          *cmap*: [ None | Colormap ]
            A :class:`matplotlib.cm.Colormap` instance. If *None*, use
            rc settings.

          norm: [ None | Normalize ]
            An :class:`matplotlib.colors.Normalize` instance is used
            to scale luminance data to 0,1. If *None*, defaults to
            :func:`normalize`.

          *vmin*/*vmax*: [ None | scalar ]
            *vmin* and *vmax* are used in conjunction with *norm* to
            normalize luminance data.  If either are *None*, the min
            and max of the color array *C* is used.  If you pass a
            *norm* instance, *vmin* and *vmax* will be ignored.

          *shading*: [ 'flat' | 'faceted' ]
            If 'faceted', a black grid is drawn around each rectangle; if
            'flat', edges are not drawn. Default is 'flat', contrary to
            MATLAB.

            This kwarg is deprecated; please use 'edgecolors' instead:
              * shading='flat' -- edgecolors='none'
              * shading='faceted  -- edgecolors='k'

          *edgecolors*: [ None | 'none' | color | color sequence]
            If *None*, the rc setting is used by default.

            If 'none', edges will not be visible.

            An mpl color or sequence of colors will set the edge color

          *alpha*: 0 <= scalar <= 1   or *None*
            the alpha blending value

        Return value is a :class:`matplotlib.collection.Collection`
        instance.

        .. _axes-pcolor-grid-orientation:

        The grid orientation follows the MATLAB convention: an
        array *C* with shape (*nrows*, *ncolumns*) is plotted with
        the column number as *X* and the row number as *Y*, increasing
        up; hence it is plotted the way the array would be printed,
        except that the *Y* axis is reversed.  That is, *C* is taken
        as *C*(*y*, *x*).

        Similarly for :func:`~matplotlib.pyplot.meshgrid`::

          x = np.arange(5)
          y = np.arange(3)
          X, Y = meshgrid(x,y)

        is equivalent to:

          X = array([[0, 1, 2, 3, 4],
                     [0, 1, 2, 3, 4],
                     [0, 1, 2, 3, 4]])

          Y = array([[0, 0, 0, 0, 0],
                     [1, 1, 1, 1, 1],
                     [2, 2, 2, 2, 2]])

        so if you have::

          C = rand( len(x), len(y))

        then you need::

          pcolor(X, Y, C.T)

        or::

          pcolor(C.T)

        MATLAB :func:`pcolor` always discards the last row and column
        of *C*, but matplotlib displays the last row and column if *X* and
        *Y* are not specified, or if *X* and *Y* have one more row and
        column than *C*.

        kwargs can be used to control the
        :class:`~matplotlib.collection.PolyCollection` properties:

        %(PolyCollection)s

        Note: the default *antialiaseds* is taken from
        rcParams['patch.antialiased'], which defaults to *True*.
        In some cases, particularly if *alpha* is 1,
        you may be able to reduce rendering artifacts (light or
        dark patch boundaries) by setting it to *False*.  An
        alternative it to set *edgecolors* to 'face'.  Unfortunately,
        there seems to be no single combination of parameters that
        eliminates artifacts under all conditions.

        R�RR�RRtshadingtflattpcolorii����iNR�iiRRqR�g�?R,R�R-R�tantialiasedtantialiaseds(Rq(g�?("R�R�R8RR�RQRR�tgetmaskarrayRORSR�R�tfilledRhtconcatenateR�RR�R�R�R�R�R�R�R�R�R
t
compressedR?R@R�R�R�((R/R<R=R�RR�RRR�RyR�R�R�RRtxymaskRSR�t	ravelmasktX1tY1tX2tY2tX3tY3tX4tY4tnpolyR9R�R�R�R�RTRUR�R�R�R�R�((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pyR��s��	
j1		44444444,&&&,	<	








cO s�|js|j�n|jdd�}|jdd�}|jdd�}|jdd�}|jdd�}|jdd�j�}|jdd	�}	|jd
t�}
|jd|�\}}}
|j\}}|dkrtj	|
d
|d�d
|d�f�}
n|
j	�}
|j	�}|j	�}t
j||dfdt�}||dd�d
f<||dd�df<|dks�|	d	kr�d}nd
}t
j|d|d||d
|
d||�}|j|�|j|
�|dk	rn|j|�|j|�|dk	s2|dk	rE|j||�n
|j�|jt�t
j|�}t
j|�}t
j|�}t
j|�}||f||ff}|j|�|j�|j|�|S(s�
        call signatures::

          pcolormesh(C)
          pcolormesh(X, Y, C)
          pcolormesh(C, **kwargs)

        *C* may be a masked array, but *X* and *Y* may not.  Masked
        array support is implemented via *cmap* and *norm*; in
        contrast, :func:`~matplotlib.pyplot.pcolor` simply does not
        draw quadrilaterals with masked colors or vertices.

        Keyword arguments:

          *cmap*: [ None | Colormap ]
            A :class:`matplotlib.cm.Colormap` instance. If None, use
            rc settings.

          *norm*: [ None | Normalize ]
            A :class:`matplotlib.colors.Normalize` instance is used to
            scale luminance data to 0,1. If None, defaults to
            :func:`normalize`.

          *vmin*/*vmax*: [ None | scalar ]
            *vmin* and *vmax* are used in conjunction with *norm* to
            normalize luminance data.  If either are *None*, the min
            and max of the color array *C* is used.  If you pass a
            *norm* instance, *vmin* and *vmax* will be ignored.

          *shading*: [ 'flat' | 'faceted' | 'gouraud' ]
            If 'faceted', a black grid is drawn around each rectangle; if
            'flat', edges are not drawn. Default is 'flat', contrary to
            MATLAB.

            This kwarg is deprecated; please use 'edgecolors' instead:
              * shading='flat' -- edgecolors='None'
              * shading='faceted  -- edgecolors='k'

          *edgecolors*: [ None | 'None' | color | color sequence]
            If None, the rc setting is used by default.

            If 'None', edges will not be visible.

            An mpl color or sequence of colors will set the edge color

          *alpha*: 0 <= scalar <= 1  or *None*
            the alpha blending value

        Return value is a :class:`matplotlib.collection.QuadMesh`
        object.

        kwargs can be used to control the
        :class:`matplotlib.collections.QuadMesh`
        properties:

        %(QuadMesh)s

        .. seealso::

            :func:`~matplotlib.pyplot.pcolor`
                For an explanation of the grid orientation and the
                expansion of 1-D *X* and/or *Y* to 2-D arrays.
        R�RR�RRR�R�R�RR�t
pcolormeshtgouraudiiiRgNR(R�R�R8RR�R
R�RQRR�ROR�RkR�tQuadMeshR�R�R�R�R�R�R�R?R@R�R�R�(R/R<R=R�RR�RRR�R�R�RyR�R�R�Rtcoordst	showedgesR�R�R�R�R�R�((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pyR�psZA	
0	








cO s�|js|j�n|jdd�}|jdd�}|jdd�}|jdd�}|jdd�}|dk	rn|d}|j\}	}
t|�dkr�d}d	|
g}d	|	g}
nGt|�d
kr|d \}}
tj|�}tj|
�}
|jdkr�|
jdkr�|j	dkrP|
j	dkrPd}qtj
|�}tj
|
�}tj|�dtj|j
��kr�tj|�dtj|j
��kr�d}qd
}q|jdkr�|
jdkr�d}qtd��ntd��|dkr<tj|�}|j�}|
j�}|
d}|	d}tj||dftj�}||dd�d	f<||dd�df<tj|
|	|d	�}|j|�|j|�|j|�|j|�|j|�|j�|j�|j�|j�f\}}}}|}n.|d	|d|
d	|
df\}}}}|dkr�tj|||ddddd||||f|�}|j|�|j|�|jj |�|}n|d
kr1tj!|||
|d|d|d||�}|jj |�|}n|j"|�|dk	sV|dk	ri|j#||�n
|j$�|j%tj&||g||gg��|j'dt(�|S(s�
        pseudocolor plot of a 2-D array

        Experimental; this is a version of pcolor that
        does not draw lines, that provides the fastest
        possible rendering with the Agg backend, and that
        can handle any quadrilateral grid.

        Call signatures::

          pcolor(C, **kwargs)
          pcolor(xr, yr, C, **kwargs)
          pcolor(x, y, C, **kwargs)
          pcolor(X, Y, C, **kwargs)

        C is the 2D array of color values corresponding to quadrilateral
        cells. Let (nr, nc) be its shape.  C may be a masked array.

        ``pcolor(C, **kwargs)`` is equivalent to
        ``pcolor([0,nc], [0,nr], C, **kwargs)``

        *xr*, *yr* specify the ranges of *x* and *y* corresponding to the
        rectangular region bounding *C*.  If::

            xr = [x0, x1]

        and::

            yr = [y0,y1]

        then *x* goes from *x0* to *x1* as the second index of *C* goes
        from 0 to *nc*, etc.  (*x0*, *y0*) is the outermost corner of
        cell (0,0), and (*x1*, *y1*) is the outermost corner of cell
        (*nr*-1, *nc*-1).  All cells are rectangles of the same size.
        This is the fastest version.

        *x*, *y* are 1D arrays of length *nc* +1 and *nr* +1, respectively,
        giving the x and y boundaries of the cells.  Hence the cells are
        rectangular but the grid may be nonuniform.  The speed is
        intermediate.  (The grid is checked, and if found to be
        uniform the fast version is used.)

        *X* and *Y* are 2D arrays with shape (*nr* +1, *nc* +1) that specify
        the (x,y) coordinates of the corners of the colored
        quadrilaterals; the quadrilateral for C[i,j] has corners at
        (X[i,j],Y[i,j]), (X[i,j+1],Y[i,j+1]), (X[i+1,j],Y[i+1,j]),
        (X[i+1,j+1],Y[i+1,j+1]).  The cells need not be rectangular.
        This is the most general, but the slowest to render.  It may
        produce faster and more compact output using ps, pdf, and
        svg backends, however.

        Note that the the column index corresponds to the x-coordinate,
        and the row index corresponds to y; for details, see
        the "Grid Orientation" section below.

        Optional keyword arguments:

          *cmap*: [ None | Colormap ]
            A cm Colormap instance from cm. If None, use rc settings.
          *norm*: [ None | Normalize ]
            An mcolors.Normalize instance is used to scale luminance data to
            0,1. If None, defaults to normalize()
          *vmin*/*vmax*: [ None | scalar ]
            *vmin* and *vmax* are used in conjunction with norm to normalize
            luminance data.  If either are *None*, the min and max of the color
            array *C* is used.  If you pass a norm instance, *vmin* and *vmax*
            will be *None*.
          *alpha*: 0 <= scalar <= 1  or *None*
            the alpha blending value

        Return value is an image if a regular or rectangular grid
        is specified, and a QuadMesh collection in the general
        quadrilateral case.

        R�RR�RRi����iR�iiig{�G�z�?tpcolorimagetquadmeshs'arguments do not match valid signaturessneed 1 argument or 3 argumentsNR�tnearestR�R�R-R�()R�R�R8RRQRhROR�RRR
R)tptpRmtmeanRBRR�R"tfloat64R�R�R�R�R�R�R�R�RnRR�R�R+RotPcolorImageRR�R�R�R�R�R	(R/R<R=R�RR�RRR�R�R�R9RTRUR�R�RyR�RR�R�R�txlR�tybR�R>R�((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pyt
pcolorfast�s�N	

	((			






6	.	

			

(cO s3|js|j�nt|d<tj|||�S(NR�(R�R�R
tmcontourtQuadContourSet(R/R<R=((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pyR��s	

cO s3|js|j�nt|d<tj|||�S(NR�(R�R�R	R�R�(R/R<R=((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pytcontourf�s	

cO s|j||�S(N(tclabel(R/tCSR<R=((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pyR��scK stj||�S(s�
        call signature::

          table(cellText=None, cellColours=None,
                cellLoc='right', colWidths=None,
                rowLabels=None, rowColours=None, rowLoc='left',
                colLabels=None, colColours=None, colLoc='center',
                loc='bottom', bbox=None):

        Add a table to the current axes.  Returns a
        :class:`matplotlib.table.Table` instance.  For finer grained
        control over tables, use the :class:`~matplotlib.table.Table`
        class and add it to the axes with
        :meth:`~matplotlib.axes.Axes.add_table`.

        Thanks to John Gill for providing the class and table.

        kwargs control the :class:`~matplotlib.table.Table`
        properties:

        %(Table)s
        (tmtablettable(R/R=((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pyR��scC su|jj|jt�d|dt�}|jj�|jjd�|jjd�|jj	�|j
jt�|S(s
        call signature::

          ax = twinx()

        create a twin of Axes for generating a plot with a sharex
        x-axis but independent y axis.  The y-axis of self will have
        ticks on left and the returned axes will have ticks on the
        right
        R�R�R�(R�tadd_axesR�R	R
R7t
tick_righttset_label_positiontset_offset_positiont	tick_leftR6tset_visible(R/tax2((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pyttwinx�s	

cC se|jj|jt�d|dt�}|jj�|jjd�|jj�|j	j
t�|S(s
        call signature::

          ax = twiny()

        create a twin of Axes for generating a plot with a shared
        y-axis but independent x axis.  The x-axis of self will have
        ticks on bottom and the returned axes will have ticks on the
        top
        R�R�R�(R�R�R�R	R
R6ttick_topR�ttick_bottomR7R�(R/R�((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pyttwiny�s	

cC s|jS(s:Return a copy of the shared axes Grouper object for x axes(R�(R/((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pytget_shared_x_axes�scC s|jS(s:Return a copy of the shared axes Grouper object for y axes(R�(R/((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pytget_shared_y_axes�sRIR*R6c4K s6|js|j�n|d4kr5td|��n|	d5krTtd	|	��n|
d6krstd|
��n|jd
�dk	r�td��nt|tj�s�t	|d�r\tj
|�}|jdkr�|j}n7|jdkr|j
d|jd�}ntd��|jd|jdkr~tjd|jddd��q~n"g|D]}tj|�^qc}t|�}|
dkr�gt|�D]}|jjj�^q�}
n3tjj|
�}
t|
�|kr�td��n|dk	rt|tj�s&t	|d�r�tj|�}|jdkrP|j}q�|jdkrxd|jdf|_q�td��n"g|D]}tj|�^q�}t|�|kr�td��nxSt|�D]5}t||�t||�kr�td��q�q�Wn
dg|}|j�}|j�}|jt�|jt�|jj }t!j	|�pv|dk}|s�tj"}tj"}x8|D]0}t#||j#��}t$||j$��}q�W||f}nt%d|�}tj&dkrt'|d<ng}xt|�D]q}tj(|||d|||�\}}|r~tj)|�}|j*t+�||j,�}n|j-|�qW|r�|j.�d|j/�kr�tjd�n|rjt0d�}t!j1|�r|dkrt0ddd�}n|r@g|D]'}|tj)|�|j2�|^q}qjg|D]}||j2�|^qG}ng} |j3d�rMtj)|�}!|dk	r�t#dt$d |��}"n!t|�dkr�d!}"nd}"|dkr.|"|!|}#|#}$|dkrd"|"|!dd|}%nd }%t}&n+|dkrY|"|!}#d7\}%}$t'}&n|	dksq|	d#kr�|%d$|!7}%n|	dkr�|%|!7}%n|
d
kr�|j4}'n	|j5}'x�t6||
�D]z\}}(|'|d |%||#|d%d&d'|d(|(�})| j-|)�|&r<|dkr/d }n||7}n|%|$7}%q�Wn1|j3d�r~
tj7dt|�tj+�}tj7dt|�tj+�}*|||ddd�<|ddd�<t#|�}+|	dks�|	d&kr|d$|d|d8}n)|	dkr+|d$|d|d7}n|rr|+|+|*d<|*d<|
d
krb|j8d'�qr|j9d'�n|dk},x�t6||
�D]�\}}(|||*ddd�<|*ddd�<|r�|+|*|*|+k<n|
d
kr�|*|}}*n|,r$	| j-|j:||*d)td*|(��q�| j-|j:||*d)td+|(d,t��q�W|
d
kr�	t$|dd-|+�}-|jj;d}x'|D]}tj<||dk�}q�	Wt$|d-|+�}t#|-|�}||f|j_;q~
|
dkr~
t$|dd-|+�}.|jj=d}/x'|D]}tj<||dk�}0q!
Wt$|0d-|+�}0t#|.|0�}0|0|/f|j_=q~
n|dkr�
d.g}1n?t>|�r�
|g}1n't?|�r�
t@|�}1ntd/��t|1�|kr|1d.g|t|1�7}1nxNt6| |1�D]=\})}2x.|)D]&}3|3jA|�|3jB|2�d.}2q(WqW|r�|
dkr�|jC|ddf|ddfgd0t�q�|jCd|dfd|dfgd1t�n|j|�|j|�|jD�|dkr|d|t!jEd2| d�fS||t!jEd3| �fSdS(8sb
        call signature::

          hist(x, bins=10, range=None, normed=False, cumulative=False,
               bottom=None, histtype='bar', align='mid',
               orientation='vertical', rwidth=None, log=False, **kwargs)

        Compute and draw the histogram of *x*. The return value is a
        tuple (*n*, *bins*, *patches*) or ([*n0*, *n1*, ...], *bins*,
        [*patches0*, *patches1*,...]) if the input contains multiple
        data.

        Multiple data can be provided via *x* as a list of datasets
        of potentially different length ([*x0*, *x1*, ...]), or as
        a 2-D ndarray in which each column is a dataset.  Note that
        the ndarray form is transposed relative to the list form.

        Masked arrays are not supported at present.

        Keyword arguments:

          *bins*:
            Either an integer number of bins or a sequence giving the
            bins.  If *bins* is an integer, *bins* + 1 bin edges
            will be returned, consistent with :func:`numpy.histogram`
            for numpy version >= 1.3, and with the *new* = True argument
            in earlier versions.
            Unequally spaced bins are supported if *bins* is a sequence.

          *range*:
            The lower and upper range of the bins. Lower and upper outliers
            are ignored. If not provided, *range* is (x.min(), x.max()).
            Range has no effect if *bins* is a sequence.

            If *bins* is a sequence or *range* is specified, autoscaling
            is based on the specified bin range instead of the
            range of x.

          *normed*:
            If *True*, the first element of the return tuple will
            be the counts normalized to form a probability density, i.e.,
            ``n/(len(x)*dbin)``.  In a probability density, the integral of
            the histogram should be 1; you can verify that with a
            trapezoidal integration of the probability density function::

              pdf, bins, patches = ax.hist(...)
              print np.sum(pdf * np.diff(bins))

            .. Note:: Until numpy release 1.5, the underlying numpy
                      histogram function was incorrect with *normed*=*True*
                      if bin sizes were unequal.  MPL inherited that
                      error.  It is now corrected within MPL when using
                      earlier numpy versions

          *weights*
            An array of weights, of the same shape as *x*.  Each value in
            *x* only contributes its associated weight towards the bin
            count (instead of 1).  If *normed* is True, the weights are
            normalized, so that the integral of the density over the range
            remains 1.

          *cumulative*:
            If *True*, then a histogram is computed where each bin
            gives the counts in that bin plus all bins for smaller values.
            The last bin gives the total number of datapoints.  If *normed*
            is also *True* then the histogram is normalized such that the
            last bin equals 1. If *cumulative* evaluates to less than 0
            (e.g. -1), the direction of accumulation is reversed.  In this
            case, if *normed* is also *True*, then the histogram is normalized
            such that the first bin equals 1.

          *histtype*: [ 'bar' | 'barstacked' | 'step' | 'stepfilled' ]
            The type of histogram to draw.

              - 'bar' is a traditional bar-type histogram.  If multiple data
                are given the bars are aranged side by side.

              - 'barstacked' is a bar-type histogram where multiple
                data are stacked on top of each other.

              - 'step' generates a lineplot that is by default
                unfilled.

              - 'stepfilled' generates a lineplot that is by default
                filled.

          *align*: ['left' | 'mid' | 'right' ]
            Controls how the histogram is plotted.

              - 'left': bars are centered on the left bin edges.

              - 'mid': bars are centered between the bin edges.

              - 'right': bars are centered on the right bin edges.

          *orientation*: [ 'horizontal' | 'vertical' ]
            If 'horizontal', :func:`~matplotlib.pyplot.barh` will be
            used for bar-type histograms and the *bottom* kwarg will be
            the left edges.

          *rwidth*:
            The relative width of the bars as a fraction of the bin
            width.  If *None*, automatically compute the width. Ignored
            if *histtype* = 'step' or 'stepfilled'.

          *log*:
            If *True*, the histogram axis will be set to a log scale.
            If *log* is *True* and *x* is a 1D array, empty bins will
            be filtered out and only the non-empty (*n*, *bins*,
            *patches*) will be returned.

          *color*:
            Color spec or sequence of color specs, one per
            dataset.  Default (*None*) uses the standard line
            color sequence.

          *label*:
            String, or sequence of strings to match multiple
            datasets.  Bar charts yield multiple patches per
            dataset, but only the first gets the label, so
            that the legend command will work as expected::

                ax.hist(10+2*np.random.randn(1000), label='men')
                ax.hist(12+3*np.random.randn(1000), label='women', alpha=0.5)
                ax.legend()

        kwargs are used to update the properties of the
        :class:`~matplotlib.patches.Patch` instances returned by *hist*:

        %(Patch)s

        **Example:**

        .. plot:: mpl_examples/pylab_examples/histogram_demo.py
        RIt
barstackedR+t
stepfilledshisttype %s is not recognizedR�R*R�s align kwarg %s is not recognizedR8R6s&orientation kwarg %s is not recognizedRnsFhist now uses the rwidth to give relative width and not absolute widthiiisx must be 1D or 2DsX2D hist input should be nsamples x nvariables;
 this looks transposed (shape is %d x %d)Ni����s+color kwarg must have one color per datasetsweights must be 1D or 2Ds'weights should have the same shape as xR�s1.3tnewtweightsg{�G�z�?sQ
            This release fixes a normalization bug in the NumPy histogram
            function prior to version 1.5, occuring with non-uniform
            bin widths. The returned and plotted value is now a density:
                n / (N * bin width),
            where n is the bin count and N the total number of points.
            g�?gg�������?g�R4g�?R3R�RfR RaR_R,R`g�������?R:s4invalid label: must be string or sequence of stringsR�R�R�sLists of Patches(sbarR�sstepR�(sleftsmidsright(s
horizontalsvertical(gg(FR�R�RRlRR'R�ROtndarrayR�R�RRR�R�RQR%R&R�RhRmR$R3RZRRR<R�R�R�R
R�R�R�RtinfR�RnRPt__version__R	t	histogramR)RXRkRZRotstdR�tsliceR�tcumsumRRJRIRiR�R�R�R`R�R?R�RR�R;R�R�R�R�R�(4R/RTR,R�RR�t
cumulativeR�thisttypeR3R5trwidthRfR R�R=R�R0RFR|twit_saved_autoscalext_saved_autoscaleyt
_saved_boundst	binsgivenR\R]thist_kwargsRDR�tdbtslcR'ttotwidthtdrRntdwtboffsettstackedt_barfuncR"R6RURIR`txmin0tymin0R_R^RptlblR�((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pythist�sl�	
#	"+#" 


	


) "
7*		
	
		
	
''

	


00


!iiR�c
K s]|js|j�ntj||||||||	|
�	\}}
t|
�f|_|
|7}
|
d	tfkrzd}nd}|j|
dt	j
|�|�|jd�|jd|�|j
t�|jj\}}||}tt	j
|��}|dkrd}nd|}t	jtj|�tj|�d|�}|j|�||
fS(
s�
        call signature::

          psd(x, NFFT=256, Fs=2, Fc=0, detrend=mlab.detrend_none,
              window=mlab.window_hanning, noverlap=0, pad_to=None,
              sides='default', scale_by_freq=None, **kwargs)

        The power spectral density by Welch's average periodogram
        method.  The vector *x* is divided into *NFFT* length
        segments.  Each segment is detrended by function *detrend* and
        windowed by function *window*.  *noverlap* gives the length of
        the overlap between segments.  The :math:`|\mathrm{fft}(i)|^2`
        of each segment :math:`i` are averaged to compute *Pxx*, with a
        scaling to correct for power loss due to windowing.  *Fs* is the
        sampling frequency.

        %(PSD)s

          *Fc*: integer
            The center frequency of *x* (defaults to 0), which offsets
            the x extents of the plot to reflect the frequency range used
            when a signal is acquired and then filtered and downsampled to
            baseband.

        Returns the tuple (*Pxx*, *freqs*).

        For plotting, the power is plotted as
        :math:`10\log_{10}(P_{xx})` for decibels, though *Pxx* itself
        is returned.

        References:
          Bendat & Piersol -- Random Data: Analysis and Measurement
          Procedures, John Wiley & Sons (1986)

        kwargs control the :class:`~matplotlib.lines.Line2D` properties:

        %(Line2D)s

        **Example:**

        .. plot:: mpl_examples/pylab_examples/psd_demo.py
        sdB/HztdBi
t	FrequencysPower Spectral Density (%s)ig�������?iN(R�R�R�tpsdRhRQRR	R+RORcR�R�R�R�R�RRjRZRtceilRx(R/RTtNFFTtFstFcRtwindowtnoverlaptpad_totsidest
scale_by_freqR=tpxxtfreqst	psd_unitsRRtintvtlogiR+Rg((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pyR��s,.	

	 


	
+
cK s)|js|j�ntj||||||||	|
|�
\}
}t|�f|
_||7}|j|dtjtj	|
��|�|j
d�|jd�|jt
�|jj\}}||}dttj|��}tjtj|�tj|�d|�}|j|�|
|fS(s�
        call signature::

          csd(x, y, NFFT=256, Fs=2, Fc=0, detrend=mlab.detrend_none,
              window=mlab.window_hanning, noverlap=0, pad_to=None,
              sides='default', scale_by_freq=None, **kwargs)

        The cross spectral density :math:`P_{xy}` by Welch's average
        periodogram method.  The vectors *x* and *y* are divided into
        *NFFT* length segments.  Each segment is detrended by function
        *detrend* and windowed by function *window*.  The product of
        the direct FFTs of *x* and *y* are averaged over each segment
        to compute :math:`P_{xy}`, with a scaling to correct for power
        loss due to windowing.

        Returns the tuple (*Pxy*, *freqs*).  *P* is the cross spectrum
        (complex valued), and :math:`10\log_{10}|P_{xy}|` is
        plotted.

        %(PSD)s

          *Fc*: integer
            The center frequency of *x* (defaults to 0), which offsets
            the x extents of the plot to reflect the frequency range used
            when a signal is acquired and then filtered and downsampled to
            baseband.

        References:
          Bendat & Piersol -- Random Data: Analysis and Measurement
          Procedures, John Wiley & Sons (1986)

        kwargs control the Line2D properties:

        %(Line2D)s

        **Example:**

        .. plot:: mpl_examples/pylab_examples/csd_demo.py

        .. seealso:

            :meth:`psd`
                For a description of the optional parameters.
        i
R�sCross Spectrum Magnitude (dB)i(R�R�R�tcsdRhRQR+RORctabsoluteR�R�R�R	R�R�RRjRZRR�Rx(R/RTRUR�R�R�RR�R�R�R�R�R=tpxyR�RRR�R+Rg((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pyR��s 0	

)



+
c	K s�|js|j�ntj||||||||�\}
}||7}|j||
|�|jd�|jd�|jt�|
|fS(s�
        call signature::

          cohere(x, y, NFFT=256, Fs=2, Fc=0, detrend = mlab.detrend_none,
                 window = mlab.window_hanning, noverlap=0, pad_to=None,
                 sides='default', scale_by_freq=None, **kwargs)

        :meth:`cohere` the coherence between *x* and *y*.  Coherence
        is the normalized cross spectral density:

        .. math::

          C_{xy} = \frac{|P_{xy}|^2}{P_{xx}P_{yy}}

        %(PSD)s

          *Fc*: integer
            The center frequency of *x* (defaults to 0), which offsets
            the x extents of the plot to reflect the frequency range used
            when a signal is acquired and then filtered and downsampled to
            baseband.

        The return value is a tuple (*Cxy*, *f*), where *f* are the
        frequencies of the coherence vector.

        kwargs are applied to the lines.

        References:

          * Bendat & Piersol -- Random Data: Analysis and Measurement
            Procedures, John Wiley & Sons (1986)

        kwargs control the :class:`~matplotlib.lines.Line2D`
        properties of the coherence plot:

        %(Line2D)s

        **Example:**

        .. plot:: mpl_examples/pylab_examples/cohere_demo.py
        R�t	Coherence(	R�R�R�tcohereR+R�R�R�R	(R/RTRUR�R�R�RR�R�R�R�R�R=tcxyR�((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pyR#s-	




i�c

K s�|js|j�ntj|||||||
||�	\}}}dtj|�}tj|�}|	dkr�dtj|�f}	n|	\}}||7}|||d|df}|j	||d||
�}|j
d�||||fS(s�
        call signature::

          specgram(x, NFFT=256, Fs=2, Fc=0, detrend=mlab.detrend_none,
                   window=mlab.window_hanning, noverlap=128,
                   cmap=None, xextent=None, pad_to=None, sides='default',
                   scale_by_freq=None, **kwargs)

        Compute a spectrogram of data in *x*.  Data are split into
        *NFFT* length segments and the PSD of each section is
        computed.  The windowing function *window* is applied to each
        segment, and the amount of overlap of each segment is
        specified with *noverlap*.

        %(PSD)s

          *Fc*: integer
            The center frequency of *x* (defaults to 0), which offsets
            the y extents of the plot to reflect the frequency range used
            when a signal is acquired and then filtered and downsampled to
            baseband.

          *cmap*:
            A :class:`matplotlib.cm.Colormap` instance; if *None* use
            default determined by rc

          *xextent*:
            The image extent along the x-axis. xextent = (xmin,xmax)
            The default is (0,max(bins)), where bins is the return
            value from :func:`mlab.specgram`

          *kwargs*:

            Additional kwargs are passed on to imshow which makes the
            specgram image

          Return value is (*Pxx*, *freqs*, *bins*, *im*):

          - *bins* are the time points the spectrogram is calculated over
          - *freqs* is an array of frequencies
          - *Pxx* is a len(times) x len(freqs) array of power
          - *im* is a :class:`matplotlib.image.AxesImage` instance

        Note: If *x* is real (i.e. non-complex), only the positive
        spectrum is shown.  If *x* is complex, both positive and
        negative parts of the spectrum are shown.  This can be
        overridden using the *sides* keyword argument.

        **Example:**

        .. plot:: mpl_examples/pylab_examples/specgram_demo.py
        g$@ii����R-R�N(R�R�R�tspecgramRORctflipudRR@R�R�(R/RTR�R�R�RR�R�R�txextentR�R�R�R=tPxxR�R,tZR\R]R-R�((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pyR\s9	


RMcK s	|d%kr"d}tjd�n|d%krR|d%krRt|d�rRd}n|d%kr|d%krtj|�}tj|�|k}d|kr�tjddgdd	�|d<n|j	\}}	d
|	d|dd
g}
|j
|dd
d|d|
dd|�}n^t|d�r�|j�}|dkrN|j}
|j
}q�tj|j�|k}|j|}
|j
|}n9tj|�}tj|�|k}tj|�\}
}|d%kr�d}n|d%kr�d}ntj||
ddd|d||�}|j|�|j	\}}	|jdd
d|	d�|jd|ddd
�|j|�|}|jjd�|jj�|jjd�|jjtjddd d!d"d#dgd$t��|jjtjddd d!d"d#dgd$t��|S(&s	
        call signature::

          spy(Z, precision=0, marker=None, markersize=None,
              aspect='equal', **kwargs)

        ``spy(Z)`` plots the sparsity pattern of the 2-D array *Z*.

        If *precision* is 0, any non-zero value will be plotted;
        else, values of :math:`|Z| > precision` will be plotted.

        For :class:`scipy.sparse.spmatrix` instances, there is a
        special case: if *precision* is 'present', any value present in
        the array will be plotted, even if it is identically zero.

        The array will be plotted as it would be printed, with
        the first index (row) increasing down and the second
        index (column) increasing to the right.

        By default aspect is 'equal', so that each array element
        occupies a square space; set the aspect kwarg to 'auto'
        to allow the plot to fill the plot box, or to any scalar
        number to specify the aspect ratio of an array element
        directly.

        Two plotting styles are available: image or marker. Both
        are available for full arrays, but only the marker style
        works for :class:`scipy.sparse.spmatrix` instances.

        If *marker* and *markersize* are *None*, an image will be
        returned and any remaining kwargs are passed to
        :func:`~matplotlib.pyplot.imshow`; else, a
        :class:`~matplotlib.lines.Line2D` object will be returned with
        the value of marker determining the marker type, and any
        remaining kwargs passed to the
        :meth:`~matplotlib.axes.Axes.plot` method.

        If *marker* and *markersize* are *None*, useful kwargs include:

        * *cmap*
        * *alpha*

        .. seealso::

            :func:`~matplotlib.pyplot.imshow`
               For image options.

        For controlling colors, e.g. cyan background and red marks,
        use::

          cmap = mcolors.ListedColormap(['c','r'])

        If *marker* or *markersize* is not *None*, useful kwargs include:

        * *marker*
        * *markersize*
        * *color*

        Useful values for *marker* include:

        * 's'  square (default)
        * 'o'  circle
        * '.'  point
        * ','  pixel

        .. seealso::

            :func:`~matplotlib.pyplot.plot`
               For plotting options
        isUse precision=0 instead of NonettocooRR�R|RqR>tbinaryg�g�?R�R�ROR-R�RYtpresenti
RRRt
markersizeR\R]R^R_g�������?R�tnbinsi	tstepsiiitintegerN( RR%R'RAROR�RRtListedColormapRQR�R
R�RNR�tnonzeroRR[R�RRR�R4tset_yR6R�tset_ticks_positiontset_major_locatortmtickertMaxNLocatorR	R7(R/R	t	precisionRR
ROR=RR�R�R-R>R"RURTRtmarks((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pytspy�s`H'		
		




c	K stj|�}|j\}}d|d|ddg}i|d6dd6dd6dd	6}|j|�|j||�}|jjd
�|jj�|jj	d�|jj
tjdd
dddddgdt
��|jj
tjdd
dddddgdt
��|S(s�
        Plot a matrix or array as an image.

        The matrix will be shown the way it would be printed,
        with the first row at the top.  Row and column numbering
        is zero-based.

        Argument:
            *Z*   anything that can be interpreted as a 2-D array

        kwargs all are passed to :meth:`~matplotlib.axes.Axes.imshow`.
        :meth:`matshow` sets defaults for *extent*, *origin*,
        *interpolation*, and *aspect*; use care in overriding the
        *extent* and *origin* kwargs, because they interact.  (Also,
        if you want to change them, you probably should be using
        imshow directly in your own version of matshow.)

        Returns: an :class:`matplotlib.image.AxesImage` instance.
        g�g�?R-RYR�R�R�RMROg�������?R�Ri	Riiii
R(ROR�RQR�R�R4RR6R�RRRRR	R7(R/R	R=R�R�R-R\R�((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pytmatshow" s&





cC sWg}g}|j|�|jj�r;|j|j�n|jj�r�|j|jj�|jj|�\}}|j||g�n|jj�r�|j|jj�|jj|�\}}|j||g�n|jg|D]!}|j�r�|j|�^q��t	j
jg|D]*}	|	jdksD|	j
dkr |	^q �}
|
S(st
        return the tight bounding box of the axes.
        The dimension of the Bbox in canvas coordinate.
        i(RoR4RR6R�tget_ticklabel_extentsR
R7R�R�R�R�RnRo(R/R!R*Rtbbx1tbbx2tbby1tbby2R"RHt_bbox((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pyt
get_tightbboxK s 
5CcC sqxj|j|jfD]V}|j�dkrV|j}|jtj|j|j��q|jtj	��qWdS(s(Add autoscaling minor ticks to the axes.RfN(
R6R7Rt_scaletset_minor_locatorRt
LogLocatortbasetsubstAutoMinorLocator(R/RR((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pyt
minorticks_oni s
	"cC s0|jjtj��|jjtj��dS(s!Remove minor ticks from the axes.N(R6R$RtNullLocatorR7(R/((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pytminorticks_offr scO stj|||�S(N(tmtrit
tricontour(R/R<R=((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pyR-w scO stj|||�S(N(R,ttricontourf(R/R<R=((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pyR.{ scO stj|||�S(N(R,t	tripcolor(R/R<R=((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pyR/ scO stj|||�dS(N(R,ttriplot(R/R<R=((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pyR0� s(�RyRzR{R>RtGrouperR�R�R�RR	R0R�R�R�R�R�R�R�R�R�R�R�R
R�R�R�R�R�RRR�R�REtpropertytframeRFR.RGRIRKR�RRRNRTR�RbRdR�R�R�R�R�R�R�R�R�R�R�R�R�R�R�R�R�R�R�R�R�R�R�R�R�R�R�R�R�R�R�R�R�R�R�R�R�R�R�R�R�RRR-R.R/t_Axes__draw_animateR5R6R7R8Rtdedent_interpdR�RGRKRTR�R�RURVRWRXRXRqRRRgR�ReRhRjRlRnRrRsRtRYRpRRRhR�RwRxRyRzR{R|RR�R�R�R�R�R�R�R�R�R�R�R�R�R�R�R�R�R�R�R�t_Axes__pickR�R�R�R�R�R�RR�R�R�R�R�tdedentR�R�R+RR	RRRR�tdetrend_noneR
RR!R&R+RIRJRORVRsR>R�RROR�RQRSRWRTRUt
quiverkey_docR[RXt
quiver_docR^R`R}R�R�R�R�R�R�R�R�R�tcontour_docR�R�R�R�R�R�R�R�R�twindow_hanningR�R�RRRRR"R)R+R-R,t
TriContourSetttricontour_docR.R/R0(((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pyR|LsV
			
		&					!							Y			
		6		
				�	;														
	
					
		
	&									
		:		(?y						
					K'P				
			
	U							V	
		
								
		
	E										E			O@@89TO�G<44?	W	
		�	 �F++		�	�	��:			��		0�l	�	�{�								��EB6	F	{	)								(tGridSpectSubplotSpectSubplotBasecB sqeZdZd�Zd�Zd�Zd�Zd�Zd�Zd�Z	d�Z
d	�Zd
�Zd�Z
RS(s�
    Base class for subplots, which are :class:`Axes` instances with
    additional methods to facilitate generating and manipulating a set
    of :class:`Axes` within a figure.
    c	O s�||_t|�dkr�t|dt�r>|d|_q�y2tt|d��}tt|�\}}}Wntk
r�td��nXt	||�|d|_n�t|�dkrq|\}}}t|�}t|�}t|t
�rNt|�dkrNg|D]}t|�^q}t	||�|dd|d!|_q�t	||�t|�d|_ntd|f��|j�|jj
|||j|�dS(s
        *fig* is a :class:`matplotlib.figure.Figure` instance.

        *args* is the tuple (*numRows*, *numCols*, *plotNum*), where
        the array of subplots in the figure has dimensions *numRows*,
        *numCols*, and where *plotNum* is the number of the subplot
        being created.  *plotNum* starts at 1 in the upper left
        corner and increases to the right.


        If *numRows* <= *numCols* <= *plotNum* < 10, *args* can be the
        decimal integer *numRows* * 100 + *numCols* * 10 + *plotNum*.
        iis4Single argument to subplot must be a 3-digit integeriis"Illegal argument(s) to subplot: %sN(R�RhR�R@t_subplotspecRRtmapRR?R~t
update_paramst_axes_classR0tfigbox(	R/R�R<R=RtrowstcolstnumRD((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pyR0� s,	

!(#
cC s/|j�j�\}}}}|||dfS(s"get the subplot geometry, eg 2,2,3i(tget_subplotspectget_geometry(R/RGRHtnum1tnum2((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pyRK� scC s8t||�|d|_|j�|j|j�dS(s0change subplot geometry, eg. from 1,1,1 to 2,2,3iN(R?RBRDR�RF(R/tnumrowstnumcolsRI((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pytchange_geometry� s
cC s|jS(s8get the SubplotSpec instance associated with the subplot(RB(R/((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pyRJ� scC s
||_dS(s8set the SubplotSpec instance associated with the subplotN(RB(R/tsubplotspec((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pytset_subplotspec� scC s@|j�j|jdt�\|_|_|_|_|_dS(s0update the subplot position from fig.subplotparst
return_allN(	RJR�R�R	RFtrowNumtcolNumR�R�(R/((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pyRD� scC s
|jdkS(Ni(RU(R/((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pytis_first_col� scC s
|jdkS(Ni(RT(R/((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pytis_first_row� scC s|j|jdkS(Ni(RTR�(R/((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pytis_last_row� scC s|j|jdkS(Ni(RUR�(R/((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pytis_last_col� scC sd|j�}|j�}x!|j�D]}|j|�q%Wx!|j�D]}|j|�qIWdS(s�
        set the visible property on ticklabels so xticklabels are
        visible only if the subplot is in the last row and yticklabels
        are visible only if the subplot is in the first column
        N(RXRVRnR�R{(R/tlastrowtfirstcolR�((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pytlabel_outer� s(RyRzR{R0RKRPRJRRRDRVRWRXRYR\(((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pyRA� s	1									cC sj|dkrt}ntj|�}|dkrftjd|jt|fi|d6�}|t|<n|S(Ns	%sSubplotRE(RR|t_subplot_classesRlR�tclassobjRyRA(t
axes_classt	new_class((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pytsubplot_class_factory� s		
tSubplot(et
__future__RRRZtsysR%tdatetimeR�toperatorRR1tnumpyRORR�Rtmatplotlib.artisttartistR�Rtmatplotlib.axisR�R�tmatplotlib.cbookRtmatplotlib.collectionsR.R�tmatplotlib.colorsRRtmatplotlib.contourR�R�tmatplotlib.datestdatestmdatesRtmatplotlib.font_managerR/tmatplotlib.imageR�Rtmatplotlib.legendR&R$tmatplotlib.linesR�Rtmatplotlib.mlabR�tmatplotlib.pathR�R�tmatplotlib.patchesR'Rctmatplotlib.spinesR�Rtmatplotlib.quiverR[RTtmatplotlib.scaleR�R�tmatplotlib.tableR�R�tmatplotlib.textRR2tmatplotlib.tickerttickerRtmatplotlib.transformst
transformsR�tmatplotlib.trittriR,R�RR�R
R$R)R*R�R|tmatplotlib.gridspecR?R@RAR]RRaRbtinterpdR�tkwdoc(((sB/opt/alt/python27/lib64/python2.7/site-packages/matplotlib/axes.pyt<module>s�<							S	��������������������������������[r