File: //opt/alt/python37/lib64/python3.7/site-packages/numpy/fft/__pycache__/helper.cpython-37.pyc
B
<�Fd3% � @ s� d Z ddlmZmZmZ ddlZddlZddlmZ ddl m
Z
mZmZm
Z
mZmZ dddd gZeef Zdd
d�Zddd�Zdd
d�Zddd �ZG dd� de�ZdS )z*
Discrete Fourier Transforms - helper.py
� )�division�absolute_import�print_functionN)�
integer_types)�asarray�concatenate�arange�take�integer�empty�fftshift� ifftshift�fftfreq�rfftfreqc C s� t | �}|j}|dkr$tt|��}nt|t�r4|f}|}xD|D ]<}|j| }|d d }tt||�t|�f�}t |||�}q>W |S )as
Shift the zero-frequency component to the center of the spectrum.
This function swaps half-spaces for all axes listed (defaults to all).
Note that ``y[0]`` is the Nyquist component only if ``len(x)`` is even.
Parameters
----------
x : array_like
Input array.
axes : int or shape tuple, optional
Axes over which to shift. Default is None, which shifts all axes.
Returns
-------
y : ndarray
The shifted array.
See Also
--------
ifftshift : The inverse of `fftshift`.
Examples
--------
>>> freqs = np.fft.fftfreq(10, 0.1)
>>> freqs
array([ 0., 1., 2., 3., 4., -5., -4., -3., -2., -1.])
>>> np.fft.fftshift(freqs)
array([-5., -4., -3., -2., -1., 0., 1., 2., 3., 4.])
Shift the zero-frequency component only along the second axis:
>>> freqs = np.fft.fftfreq(9, d=1./9).reshape(3, 3)
>>> freqs
array([[ 0., 1., 2.],
[ 3., 4., -4.],
[-3., -2., -1.]])
>>> np.fft.fftshift(freqs, axes=(1,))
array([[ 2., 0., 1.],
[-4., 3., 4.],
[-1., -3., -2.]])
N� � )
r �ndim�list�range�
isinstancer �shaper r r ) �x�axes�tmpr �y�k�n�p2�mylist� r �C/opt/alt/python37/lib64/python3.7/site-packages/numpy/fft/helper.pyr s ,
c C s� t | �}|j}|dkr$tt|��}nt|t�r4|f}|}xH|D ]@}|j| }||d d }tt||�t|�f�}t |||�}q>W |S )a/
The inverse of `fftshift`. Although identical for even-length `x`, the
functions differ by one sample for odd-length `x`.
Parameters
----------
x : array_like
Input array.
axes : int or shape tuple, optional
Axes over which to calculate. Defaults to None, which shifts all axes.
Returns
-------
y : ndarray
The shifted array.
See Also
--------
fftshift : Shift zero-frequency component to the center of the spectrum.
Examples
--------
>>> freqs = np.fft.fftfreq(9, d=1./9).reshape(3, 3)
>>> freqs
array([[ 0., 1., 2.],
[ 3., 4., -4.],
[-3., -2., -1.]])
>>> np.fft.ifftshift(np.fft.fftshift(freqs))
array([[ 0., 1., 2.],
[ 3., 4., -4.],
[-3., -2., -1.]])
Nr r )
r r r r r r r r r r ) r r r r r r r r r r r r r
Q s "
� �?c C sz t | t�std��d| | }t| t�}| d d d }td|td�}||d|�<