File: //opt/alt/python37/lib64/python3.7/site-packages/numpy/lib/__pycache__/financial.cpython-37.pyc
B
<�FdR] �
@ s� d Z ddlmZmZmZ ddlZdddddd d
ddd
g
Zdddddddddd� Zdd� Z d%dd�Z
d&dd�Zd'dd�Zd(dd�Z
dd� Zd)dd�Zd*dd �Zdd� Zd+d!d
�Zd"d� Zd#d� Zd$d
� ZdS ),z�Some simple financial calculations
patterned after spreadsheet computations.
There is some complexity in each function
so that the functions behave like ufuncs with
broadcasting and being able to be called with scalars
or arrays (or other sequences).
� )�division�absolute_import�print_functionN�fv�pmt�nper�ipmt�ppmt�pv�rate�irr�npv�mirr� ) �endZbegin�e�br r Z beginning�startZfinishc C s@ t | tj�r| S yt| S ttfk
r: dd� | D �S X d S )Nc S s g | ]}t | �qS � )�_when_to_num)�.0�xr r �F/opt/alt/python37/lib64/python3.7/site-packages/numpy/lib/financial.py�
<listcomp>! s z!_convert_when.<locals>.<listcomp>)�
isinstance�npZndarrayr �KeyError� TypeError)�whenr r r �
_convert_when s r r c C s� t |�}ttj| ||||g�\} }}}}d| | }t�| ||||�}t�|j�}t�| |k|| d| | |d | | �}|| || S )a�
Compute the future value.
Given:
* a present value, `pv`
* an interest `rate` compounded once per period, of which
there are
* `nper` total
* a (fixed) payment, `pmt`, paid either
* at the beginning (`when` = {'begin', 1}) or the end
(`when` = {'end', 0}) of each period
Return:
the value at the end of the `nper` periods
Parameters
----------
rate : scalar or array_like of shape(M, )
Rate of interest as decimal (not per cent) per period
nper : scalar or array_like of shape(M, )
Number of compounding periods
pmt : scalar or array_like of shape(M, )
Payment
pv : scalar or array_like of shape(M, )
Present value
when : {{'begin', 1}, {'end', 0}}, {string, int}, optional
When payments are due ('begin' (1) or 'end' (0)).
Defaults to {'end', 0}.
Returns
-------
out : ndarray
Future values. If all input is scalar, returns a scalar float. If
any input is array_like, returns future values for each input element.
If multiple inputs are array_like, they all must have the same shape.
Notes
-----
The future value is computed by solving the equation::
fv +
pv*(1+rate)**nper +
pmt*(1 + rate*when)/rate*((1 + rate)**nper - 1) == 0
or, when ``rate == 0``::
fv + pv + pmt * nper == 0
References
----------
.. [WRW] Wheeler, D. A., E. Rathke, and R. Weir (Eds.) (2009, May).
Open Document Format for Office Applications (OpenDocument)v1.2,
Part 2: Recalculated Formula (OpenFormula) Format - Annotated Version,
Pre-Draft 12. Organization for the Advancement of Structured Information
Standards (OASIS). Billerica, MA, USA. [ODT Document].
Available:
http://www.oasis-open.org/committees/documents.php?wg_abbrev=office-formula
OpenDocument-formula-20090508.odt
Examples
--------
What is the future value after 10 years of saving $100 now, with
an additional monthly savings of $100. Assume the interest rate is
5% (annually) compounded monthly?
>>> np.fv(0.05/12, 10*12, -100, -100)
15692.928894335748
By convention, the negative sign represents cash flow out (i.e. money not
available today). Thus, saving $100 a month at 5% annual interest leads
to $15,692.93 available to spend in 10 years.
If any input is array_like, returns an array of equal shape. Let's
compare different interest rates from the example above.
>>> a = np.array((0.05, 0.06, 0.07))/12
>>> np.fv(a, 10*12, -100, -100)
array([ 15692.92889434, 16569.87435405, 17509.44688102])
r )r �mapr �asarray� broadcast�zeros�shape�where) r r r r
r �temp�miter�zer�factr r r r $ s Q c
C s� t |�}ttj| ||||g�\} }}}}d| | }| dk}t�|d| �}t�t�|||||�j�}t�||k|| d|| |d | | �} ||| | S )a�
Compute the payment against loan principal plus interest.
Given:
* a present value, `pv` (e.g., an amount borrowed)
* a future value, `fv` (e.g., 0)
* an interest `rate` compounded once per period, of which
there are
* `nper` total
* and (optional) specification of whether payment is made
at the beginning (`when` = {'begin', 1}) or the end
(`when` = {'end', 0}) of each period
Return:
the (fixed) periodic payment.
Parameters
----------
rate : array_like
Rate of interest (per period)
nper : array_like
Number of compounding periods
pv : array_like
Present value
fv : array_like, optional
Future value (default = 0)
when : {{'begin', 1}, {'end', 0}}, {string, int}
When payments are due ('begin' (1) or 'end' (0))
Returns
-------
out : ndarray
Payment against loan plus interest. If all input is scalar, returns a
scalar float. If any input is array_like, returns payment for each
input element. If multiple inputs are array_like, they all must have
the same shape.
Notes
-----
The payment is computed by solving the equation::
fv +
pv*(1 + rate)**nper +
pmt*(1 + rate*when)/rate*((1 + rate)**nper - 1) == 0
or, when ``rate == 0``::
fv + pv + pmt * nper == 0
for ``pmt``.
Note that computing a monthly mortgage payment is only
one use for this function. For example, pmt returns the
periodic deposit one must make to achieve a specified
future balance given an initial deposit, a fixed,
periodically compounded interest rate, and the total
number of periods.
References
----------
.. [WRW] Wheeler, D. A., E. Rathke, and R. Weir (Eds.) (2009, May).
Open Document Format for Office Applications (OpenDocument)v1.2,
Part 2: Recalculated Formula (OpenFormula) Format - Annotated Version,
Pre-Draft 12. Organization for the Advancement of Structured Information
Standards (OASIS). Billerica, MA, USA. [ODT Document].
Available:
http://www.oasis-open.org/committees/documents.php
?wg_abbrev=office-formulaOpenDocument-formula-20090508.odt
Examples
--------
What is the monthly payment needed to pay off a $200,000 loan in 15
years at an annual interest rate of 7.5%?
>>> np.pmt(0.075/12, 12*15, 200000)
-1854.0247200054619
In order to pay-off (i.e., have a future-value of 0) the $200,000 obtained
today, a monthly payment of $1,854.02 would be required. Note that this
example illustrates usage of `fv` having a default value of 0.
r g g �?)r r r Zarrayr% r# r"