HEX
Server: LiteSpeed
System: Linux standart9.isimtescil.net 3.10.0-962.3.2.lve1.5.26.7.el7.x86_64 #1 SMP Wed Oct 2 07:53:12 EDT 2019 x86_64
User: karalev (5310)
PHP: 8.2.29
Disabled: NONE
Upload Files
File: //proc/self/root/opt/alt/python27/lib/python2.7/site-packages/schema-0.3.1-py2.7.egg-info/PKG-INFO
Metadata-Version: 1.1
Name: schema
Version: 0.3.1
Summary: Simple data validation library
Home-page: http://github.com/halst/schema
Author: Vladimir Keleshev
Author-email: vladimir@keleshev.com
License: MIT
Description: Schema validation just got Pythonic
        ===============================================================================
        
            New in version 0.2.0:
        
            - Allow intermix literals and other schemas in dictionary keys.
              I.e. ``Schema({'<id>': int, str: object})`` will check ``<id>``
              for being ``int``, and will disregard other keys of type ``<str>``.
              See this `StackOverflow question
              <http://stackoverflow.com/questions/14588098>`_ for more.
        
        **schema** is a library for validating Python data structures, such as those
        obtained from config-files, forms, external services or command-line
        parsing, converted from JSON/YAML (or something else) to Python data-types.
        
        
        .. image:: https://secure.travis-ci.org/halst/schema.png?branch=master
            :target: https://travis-ci.org/halst/schema
        
        .. image:: https://coveralls.io/repos/halst/schema/badge.png?branch=master
            :target: https://coveralls.io/r/halst/schema?branch=master
        
        Example
        ----------------------------------------------------------------------------
        
        Here is a quick example to get a feeling of **schema**, validating a list of
        entries with personal information:
        
        .. code:: python
        
            >>> from schema import Schema, And, Use, Optional
        
            >>> schema = Schema([{'name': And(str, len),
            ...                   'age':  And(Use(int), lambda n: 18 <= n <= 99),
            ...                   Optional('sex'): And(str, Use(str.lower),
            ...                                        lambda s: s in ('male', 'female'))}])
        
            >>> data = [{'name': 'Sue', 'age': '28', 'sex': 'FEMALE'},
            ...         {'name': 'Sam', 'age': '42'},
            ...         {'name': 'Sacha', 'age': '20', 'sex': 'Male'}]
        
            >>> validated = schema.validate(data)
        
            >>> assert validated == [{'name': 'Sue', 'age': 28, 'sex': 'female'},
            ...                      {'name': 'Sam', 'age': 42},
            ...                      {'name': 'Sacha', 'age' : 20, 'sex': 'male'}]
        
        
        If data is valid, ``Schema.validate`` will return the validated data
        (optionally converted with `Use` calls, see below).
        
        If data is invalid, ``Schema`` will raise ``SchemaError`` exception.
        
        
        Installation
        -------------------------------------------------------------------------------
        
        Use `pip <http://pip-installer.org>`_ or easy_install::
        
            pip install schema==0.3.1
        
        Alternatively, you can just drop ``schema.py`` file into your project—it is
        self-contained.
        
        - **schema** is tested with Python 2.6, 2.7, 3.2, 3.3 and PyPy.
        - **schema** follows `semantic versioning <http://semver.org>`_.
        
        How ``Schema`` validates data
        -------------------------------------------------------------------------------
        
        Types
        ~~~~~
        
        If ``Schema(...)`` encounters a type (such as ``int``, ``str``, ``object``,
        etc.), it will check if the corresponding piece of data is an instance of that type,
        otherwise it will raise ``SchemaError``.
        
        .. code:: python
        
            >>> from schema import Schema
        
            >>> Schema(int).validate(123)
            123
        
            >>> Schema(int).validate('123')
            Traceback (most recent call last):
            ...
            SchemaError: '123' should be instance of <type 'int'>
        
            >>> Schema(object).validate('hai')
            'hai'
        
        Callables
        ~~~~~~~~~
        
        If ``Schema(...)`` encounters a callable (function, class, or object with
        ``__call__`` method) it will call it, and if its return value evaluates to
        ``True`` it will continue validating, else—it will raise ``SchemaError``.
        
        .. code:: python
        
            >>> import os
        
            >>> Schema(os.path.exists).validate('./')
            './'
        
            >>> Schema(os.path.exists).validate('./non-existent/')
            Traceback (most recent call last):
            ...
            SchemaError: exists('./non-existent/') should evaluate to True
        
            >>> Schema(lambda n: n > 0).validate(123)
            123
        
            >>> Schema(lambda n: n > 0).validate(-12)
            Traceback (most recent call last):
            ...
            SchemaError: <lambda>(-12) should evaluate to True
        
        "Validatables"
        ~~~~~~~~~~~~~~
        
        If ``Schema(...)`` encounters an object with method ``validate`` it will run
        this method on corresponding data as ``data = obj.validate(data)``. This method
        may raise ``SchemaError`` exception, which will tell ``Schema`` that that piece
        of data is invalid, otherwise—it will continue validating.
        
        As example, you can use ``Use`` for creating such objects. ``Use`` helps to use
        a function or type to convert a value while validating it:
        
        .. code:: python
        
            >>> from schema import Use
        
            >>> Schema(Use(int)).validate('123')
            123
        
            >>> Schema(Use(lambda f: open(f, 'a'))).validate('LICENSE-MIT')
            <open file 'LICENSE-MIT', mode 'a' at 0x...>
        
        Dropping the details, ``Use`` is basically:
        
        .. code:: python
        
            class Use(object):
        
                def __init__(self, callable_):
                    self._callable = callable_
        
                def validate(self, data):
                    try:
                        return self._callable(data)
                    except Exception as e:
                        raise SchemaError('%r raised %r' % (self._callable.__name__, e))
        
        Now you can write your own validation-aware classes and data types.
        
        Lists, similar containers
        ~~~~~~~~~~~~~~~~~~~~~~~~~
        
        If ``Schema(...)`` encounters an instance of ``list``, ``tuple``, ``set`` or
        ``frozenset``, it will validate contents of corresponding data container
        against schemas listed inside that container:
        
        
        .. code:: python
        
            >>> Schema([1, 0]).validate([1, 1, 0, 1])
            [1, 1, 0, 1]
        
            >>> Schema((int, float)).validate((5, 7, 8, 'not int or float here'))
            Traceback (most recent call last):
            ...
            SchemaError: Or(<type 'int'>, <type 'float'>) did not validate 'not int or float here'
            'not int or float here' should be instance of <type 'float'>
        
        Dictionaries
        ~~~~~~~~~~~~
        
        If ``Schema(...)`` encounters an instance of ``dict``, it will validate data
        key-value pairs:
        
        .. code:: python
        
            >>> d = Schema({'name': str,
            ...             'age': lambda n: 18 < 99}).validate({'name': 'Sue', 'age': 28})
        
            >>> assert d == {'name': 'Sue', 'age': 28}
        
        You can specify keys as schemas too:
        
        .. code:: python
        
            >>> schema = Schema({str: int,  # string keys should have integer values
            ...                  int: None})  # int keys should be always None
        
            >>> data = schema.validate({'key1': 1, 'key2': 2,
            ...                         10: None, 20: None})
        
            >>> schema.validate({'key1': 1,
            ...                   10: 'not None here'})
            Traceback (most recent call last):
            ...
            SchemaError: None does not match 'not None here'
        
        This is useful if you want to check certain key-values, but don't care
        about other:
        
        .. code:: python
        
            >>> schema = Schema({'<id>': int,
            ...                  '<file>': Use(open),
            ...                  str: object})  # don't care about other str keys
        
            >>> data = schema.validate({'<id>': 10,
            ...                         '<file>': 'README.rst',
            ...                         '--verbose': True})
        
        You can mark a key as optional as follows:
        
        .. code:: python
        
            >>> from schema import Optional
            >>> Schema({'name': str,
            ...         Optional('occupation'): str}).validate({'name': 'Sam'})
            {'name': 'Sam'}
        
        **schema** has classes ``And`` and ``Or`` that help validating several schemas
        for the same data:
        
        .. code:: python
        
            >>> from schema import And, Or
        
            >>> Schema({'age': And(int, lambda n: 0 < n < 99)}).validate({'age': 7})
            {'age': 7}
        
            >>> Schema({'password': And(str, lambda s: len(s) > 6)}).validate({'password': 'hai'})
            Traceback (most recent call last):
            ...
            SchemaError: <lambda>('hai') should evaluate to True
        
            >>> Schema(And(Or(int, float), lambda x: x > 0)).validate(3.1415)
            3.1415
        
        User-friendly error reporting
        -------------------------------------------------------------------------------
        
        You can pass a keyword argument ``error`` to any of validatable classes
        (such as ``Schema``, ``And``, ``Or``, ``Use``) to report this error instead of
        a built-in one.
        
        .. code:: python
        
            >>> Schema(Use(int, error='Invalid year')).validate('XVII')
            Traceback (most recent call last):
            ...
            SchemaError: Invalid year
        
        You can see all errors that occured by accessing exception's ``exc.autos``
        for auto-generated error messages, and ``exc.errors`` for errors
        which had ``error`` text passed to them.
        
        You can exit with ``sys.exit(exc.code)`` if you want to show the messages
        to the user without traceback. ``error`` messages are given precedence in that
        case.
        
        A JSON API example
        -------------------------------------------------------------------------------
        
        Here is a quick example: validation of
        `create a gist <http://developer.github.com/v3/gists/>`_
        request from github API.
        
        .. code:: python
        
            >>> gist = '''{"description": "the description for this gist",
            ...            "public": true,
            ...            "files": {
            ...                "file1.txt": {"content": "String file contents"},
            ...                "other.txt": {"content": "Another file contents"}}}'''
        
            >>> from schema import Schema, And, Use, Optional
        
            >>> import json
        
            >>> gist_schema = Schema(And(Use(json.loads),  # first convert from JSON
            ...                          # use basestring since json returns unicode
            ...                          {Optional('description'): basestring,
            ...                           'public': bool,
            ...                           'files': {basestring: {'content': basestring}}}))
        
            >>> gist = gist_schema.validate(gist)
        
            # gist:
            {u'description': u'the description for this gist',
             u'files': {u'file1.txt': {u'content': u'String file contents'},
                        u'other.txt': {u'content': u'Another file contents'}},
             u'public': True}
        
        Using **schema** with `docopt <http://github.com/docopt/docopt>`_
        -------------------------------------------------------------------------------
        
        Assume you are using **docopt** with the following usage-pattern:
        
            Usage: my_program.py [--count=N] <path> <files>...
        
        and you would like to validate that ``<files>`` are readable, and that
        ``<path>`` exists, and that ``--count`` is either integer from 0 to 5, or
        ``None``.
        
        Assuming **docopt** returns the following dict:
        
        .. code:: python
        
            >>> args = {'<files>': ['LICENSE-MIT', 'setup.py'],
            ...         '<path>': '../',
            ...         '--count': '3'}
        
        this is how you validate it using ``schema``:
        
        .. code:: python
        
            >>> from schema import Schema, And, Or, Use
            >>> import os
        
            >>> s = Schema({'<files>': [Use(open)],
            ...             '<path>': os.path.exists,
            ...             '--count': Or(None, And(Use(int), lambda n: 0 < n < 5))})
        
            >>> args = s.validate(args)
        
            >>> args['<files>']
            [<open file 'LICENSE-MIT', mode 'r' at 0x...>, <open file 'setup.py', mode 'r' at 0x...>]
        
            >>> args['<path>']
            '../'
        
            >>> args['--count']
            3
        
        As you can see, **schema** validated data successfully, opened files and
        converted ``'3'`` to ``int``.
        
Keywords: schema json validation
Platform: UNKNOWN
Classifier: Development Status :: 3 - Alpha
Classifier: Topic :: Utilities
Classifier: Programming Language :: Python :: 2.6
Classifier: Programming Language :: Python :: 2.7
Classifier: License :: OSI Approved :: MIT License